Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 4, 2025
-
Free, publicly-accessible full text available November 18, 2025
-
Satellite image time series (SITS) segmentation is crucial for many applications, like environmental monitoring, land cover mapping, and agricultural crop type classification. However, training models for SITS segmentation remains a challenging task due to the lack of abundant training data, which requires fine-grained annotation. We propose S4, a new self-supervised pretraining approach that significantly reduces the requirement for labeled training data by utilizing two key insights of satellite imagery: (a) Satellites capture images in different parts of the spectrum, such as radio frequencies and visible frequencies. (b) Satellite imagery is geo-registered, allowing for fine-grained spatial alignment. We use these insights to formulate pretraining tasks in S4. To the best of our knowledge, S4 is the first multimodal and temporal approach for SITS segmentation. S4’s novelty stems from leveraging multiple properties required for SITS self-supervision: (1) multiple modalities, (2) temporal information, and (3) pixel-level feature extraction. We also curate m2s2-SITS, a large-scale dataset of unlabeled, spatially aligned, multimodal, and geographic-specific SITS that serves as representative pretraining data for S4. Finally, we evaluate S4 on multiple SITS segmentation datasets and demonstrate its efficacy against competing baselines while using limited labeled data. Through a series of extensive comparisons and ablation studies, we demonstrate S4’s ability as an effective feature extractor for downstream semantic segmentation.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Earth observation satellites, in low Earth orbits, are increasingly approaching near-continuous imaging of the Earth. Today, these satellites capture an image of every part of Earth every few hours. However, the networking capabilities haven’t caught up, and can introduce delays of few hours to days in getting these images to Earth. While this delay is acceptable for delay-tolerant applications like land cover maps, crop type identification, etc., it is unacceptable for latency-sensitive applications like forest fire detection or disaster monitoring. We design Serval to enable near-realtime insights from Earth imagery for latency-sensitive applications despite the networking bottlenecks by leveraging the emerging computational capabilities on the satellites and ground stations. The key challenge for our work stems from the limited computational capabilities and power resources available on a satellite. We solve this challenge by leveraging predictability in satellite orbits to bifurcate computation across satellites and ground stations. We evaluate Serval using trace-driven simulations and hardware emulations on a dataset comprising ten million images captured using the Planet Dove constellation comprising nearly 200 satellites. Serval reduces end-to-end latency for high priority queries from 71.71 hours (incurred by state of the art) to 2 minutes, and 90-th percentile from 149 hours to 47 minutes.more » « less