skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238079

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties. 
    more » « less
  2. Complete verification of deep neural networks (DNNs) can exactly determine whether the DNN satisfies a desired trustworthy property (e.g., robustness, fairness) on an infinite set of inputs or not. Despite the tremendous progress to improve the scalability of complete verifiers over the years on individual DNNs, they are inherently inefficient when a deployed DNN is updated to improve its inference speed or accuracy. The inefficiency is because the expensive verifier needs to be run from scratch on the updated DNN. To improve efficiency, we propose a new, general framework for incremental and complete DNN verification based on the design of novel theory, data structure, and algorithms. Our contributions implemented in a tool named IVAN yield an overall geometric mean speedup of 2.4x for verifying challenging MNIST and CIFAR10 classifiers and a geometric mean speedup of 3.8x for the ACAS-XU classifiers over the state-of-the-art baselines. 
    more » « less