skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238109

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cellular membranes provide a unique platform for interactions that drive emergent behaviors in protein dynamics and cellular signaling, distinct from those observed in solution. We investigated the proline‐rich region (PRR) and Src Homology 3 (SH3) domains of Bruton's tyrosine kinase (Btk) and its phase separation driven by the weak interactions of regulatory domains at membrane surfaces. Using supported lipid bilayers (SLBs) and giant unilamellar vesicles (GUVs), we demonstrate that membrane localization amplifies weak PRR‐SH3 interactions, enabling the formation of higher‐order assemblies and phase‐separated condensates. These assemblies, previously undescribed by solution‐state studies, are supported by reductions in the lateral diffusion of membrane‐bound Btk molecules and the stabilization of reversible condensates at the membrane surface. Constructs containing the native PRR and SH3 domains reliably formed membrane‐associated clusters, while mutation or deletion of these domains lessened changes in diffusion and impaired condensate formation. Our findings establish the membrane as an essential mediator of PRR‐SH3‐driven phase separation in Btk, thereby advancing our understanding of membrane‐specific regulation in signaling protein dynamics. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026