skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238213

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Based on historical developments and the current state of the art in gas-phase transmission electron microscopy (GP-TEM), we provide a perspective covering exciting new technologies and methodologies of relevance for chemical and surface sciences. Considering thermal and photochemical reaction environments, we emphasize the benefit of implementing gas cells, quantitative TEM approaches using sensitive detection for structured electron illumination (in space and time) and data denoising, optical excitation, and data mining using autonomous machine learning techniques. These emerging advances open new ways to accelerate discoveries in chemical and surface sciences. Graphical abstract 
    more » « less
  2. MultiTaskDeltaNet (MTDN) reframes semantic segmentation as change detection, enabling data-efficient, automated operando ETEM analysis for spatially-resolved carbon gasification kinetics with superior performance on small, ambiguous features. 
    more » « less
    Free, publicly-accessible full text available November 11, 2026
  3. Coking is the leading cause of catalyst deactivation in many important hydrocarbon conversion technologies. Understanding regeneration mechanisms is critical for developing effective carbon removal strategies that improve catalyst longevity and reduce operational costs. Here, we present a spatially resolved operando investigation of the regeneration of a spent Ni/CeO2 catalyst under industrially relevant air-like conditions, using in-situ environmental transmission electron microscopy (ETEM) combined with semantic segmentation. By deconvoluting competing gasification events for filamentous carbon removal, we found three distinct gasification modes─while fast catalytic gasification was expected, less steady noncatalytic combustion and cooperative gasification were also present and even more prevalent. Microstructure-informed kinetics directly linked the maximum gasification rates to axial filament consumption through either Ni/carbon contact or filament breakage, emphasizing the pivotal role of edge-plane carbon sites across all gasification pathways. Moreover, our operando characterization uncovered a Ni(−Cx)-limited carbon diffusion mechanism, which challenges the conventional carbon bulk diffusion model typically assumed for catalytic gasification. Furthermore, adverse processes such as Ni/carbon contact disruption and gasification-induced catalyst sintering were also identified. Collectively, these findings provide mechanistic insights into carbon gasification processes, highlighting critical pathways and potential pitfalls that can guide the optimization of catalyst regeneration strategies. 
    more » « less
    Free, publicly-accessible full text available October 17, 2026
  4. Free, publicly-accessible full text available June 16, 2026