skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238375

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the first method to probabilistically predict 3D direction in a deep neural network model. The probabilistic predictions are modeled as a heteroscedastic von Mises-Fisher distribution on the sphere S 2 , giving a simple way to quantify aleatoric uncertainty. This approach generalizes the cosine distance loss which is a special case of our loss function when the uncertainty is assumed to be uniform across samples. We develop approximations required to make the likelihood function and gradient calculations stable. The method is applied to the task of predicting the 3D directions of electrons, the most complex signal in a class of experimental particle physics detectors designed to demonstrate the particle nature of dark matter and study solar neutrinos. Using simulated Monte Carlo data, the initial direction of recoiling electrons is inferred from their tortuous trajectories, as captured by the 3D detectors. For 40 keV electrons in a 70% He 30% CO2gas mixture at STP, the new approach achieves a mean cosine distance of 0.104 (26) compared to 0.556 (64) achieved by a non-machine learning algorithm. We show that the model is well-calibrated and accuracy can be increased further by removing samples with high predicted uncertainty. This advancement in probabilistic 3D directional learning could increase the sensitivity of directional dark matter detectors. 
    more » « less