skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238381

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces a game-theoretical strategy for optimal dispatch of building thermal loads, based on a marginal price model derived from an actual dispatch curve. A non-cooperative game is formulated, and the existence and uniqueness of the Nash equilibrium solution are proved aided by the variational inequality theory. A game solution algorithm is presented in this paper to solve the control problem with guaranteed convergence. The proposed game-theoretical control technique was evaluated against a baseline energy minimization strategy and a socially optimal solution, through a simulation test of a virtual market comprised of six buildings. The results show that the proposed game-theoretical strategy could achieve performance very close to the social optimum with a Price of Anarchy of 1.0041 and a 24% cost reduction compared to the baseline energy-priority strategy. 
    more » « less