skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238744

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Version control systems typically rely on apatch language, heuristicpatch synthesis algorithmslike diff, andthree-way merge algorithms. Standard patch languages and merge algorithms often fail to identify conflicts correctly when there are multiple edits to one line of code or code is relocated. This paper introduces Grove, a collaborative structure editor calculus that eliminates patch synthesis and three-way merge algorithms entirely. Instead, patches are derived directly from the log of the developer’s edit actions and all edits commute, i.e. the repository state forms a commutative replicated data type (CmRDT). To handle conflicts that can arise due to code relocation, the core datatype in Grove is a labeled directed multi-graph with uniquely identified vertices and edges. All edits amount to edge insertion and deletion, with deletion being permanent. To support tree-based editing, we define a decomposition from graphs intogroves, which are a set of syntax trees with conflicts—including local, relocation, and unicyclic relocation conflicts—represented explicitly using holes and references between trees. Finally, we define a type error localization system for groves that enjoys atotalityproperty, i.e. all editor states in Grove are statically meaningful, so developers can use standard editor services while working to resolve these explicitly represented conflicts. The static semantics is defined as a bidirectional marking system in line with recent work, with gradual typing employed to handle situations where errors and conflicts prevent type determination. We then layer on a unification-based type inference system to opportunistically fill type holes and fail gracefully when no solution exists. We mechanize the metatheory of Grove using the Agda theorem prover. We implement these ideas as theGrove Workbench, which generates the necessary data structures and algorithms in OCaml given a syntax tree specification. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  2. Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary LLM-based code completion systems often hallucinate broken code because they lack appropriate code context, particularly when working with definitions that are neither in the training data nor near the cursor. This paper demonstrates that tighter integration with the type and binding structure of the programming language in use, as exposed by its language server, can help address this contextualization problem in a token-efficient manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into the Hazel live program sketching environment. The Hazel Language Server is able to identify the type and typing context of the hole that the programmer is filling, with Hazel's total syntax and type error correction ensuring that a meaningful program sketch is available whenever the developer requests a completion. This allows the system to prompt the LLM with codebase-wide contextual information that is not lexically local to the cursor, nor necessarily in the same file, but that is likely to be semantically local to the developer's goal. Completions synthesized by the LLM are then iteratively refined via further dialog with the language server, which provides error localization and error messages. To evaluate these techniques, we introduce MVUBench, a dataset of model-view-update (MVU) web applications with accompanying unit tests that have been written from scratch to avoid data contamination, and that can easily be ported to new languages because they do not have large external library dependencies. These applications serve as challenge problems due to their extensive reliance on application-specific data structures. Through an ablation study, we examine the impact of contextualization with type definitions, function headers, and errors messages, individually and in combination. We find that contextualization with type definitions is particularly impactful. After introducing our ideas in the context of Hazel, a low-resource language, we duplicate our techniques and port MVUBench to TypeScript in order to validate the applicability of these methods to higher-resource mainstream languages. Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language servers can implement to expose capabilities that AI code completion systems of various designs can use to incorporate static context when generating prompts for an LLM. 
    more » « less
  3. Type systems typically only define the conditions under which an expression is well-typed, leaving ill-typed expressions formally meaningless. This approach is insufficient as the basis for language servers driving modern programming environments, which are expected to recover from simultaneously localized errors and continue to provide a variety of downstream semantic services. This paper addresses this problem, contributing the first comprehensive formal account of total type error localization and recovery: the marked lambda calculus. In particular, we define a gradual type system for expressions with marked errors, which operate as non-empty holes, together with a total procedure for marking arbitrary unmarked expressions. We mechanize the metatheory of the marked lambda calculus in Agda and implement it, scaled up, as the new basis for Hazel, a full-scale live functional programming environment with, uniquely, no meaningless editor states. The marked lambda calculus is bidirectionally typed, so localization decisions are systematically predictable based on a local flow of typing information. Constraint-based type inference can bring more distant information to bear in discovering inconsistencies but this notoriously complicates error localization. We approach this problem by deploying constraint solving as a type-hole-filling layer atop this gradual bidirectionally typed core. Errors arising from inconsistent unification constraints are localized exclusively to type and expression holes, i.e., the system identifies unfillable holes using a system of traced provenances, rather than localized in anad hocmanner to particular expressions. The user can then interactively shift these errors to particular downstream expressions by selecting from suggested partially consistent type hole fillings, which returns control back to the bidirectional system. We implement this type hole inference system in Hazel. 
    more » « less
  4. Several modern programming systems, including GHC Haskell, Agda, Idris, and Hazel, supporttyped holes. Assigning static and, to varying degree, dynamic meaning to programs with holes allows program editors and other tools to offer meaningful feedback and assistance throughout editing, i.e. in alivemanner. Prior work, however, has considered only holes appearing in expressions and types. This paper considers, from type theoretic and logical first principles, the problem of typed pattern holes. We confront two main difficulties, (1) statically reasoning about exhaustiveness and irredundancy when patterns are not fully known, and (2) live evaluation of expressions containing both pattern and expression holes. In both cases, this requires reasoning conservatively about all possible hole fillings. We develop a typed lambda calculus, Peanut, where reasoning about exhaustiveness and redundancy is mapped to the problem of deriving first order entailments. We equip Peanut with an operational semantics in the style of Hazelnut Live that allows us to evaluate around holes in both expressions and patterns. We mechanize the metatheory of Peanut in Agda and formalize a procedure capable of deciding the necessary entailments. Finally, we scale up and implement these mechanisms within Hazel, a programming environment for a dialect of Elm that automatically inserts holes during editing to provide static and dynamic feedback to the programmer in a maximally live manner, i.e. for every possible editor state. Hazel is the first maximally live environment for a general-purpose functional language. 
    more » « less