skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238916

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A neutrino-like event with an energy of ∼220 PeV was recently detected by the KM3NeT/ARCA telescope. If this neutrino comes from an astrophysical source or from the interaction of an ultrahigh-energy cosmic ray in the intergalactic medium, the ultrahigh-energy gamma rays that are coproduced with the neutrinos will scatter with the extragalactic background light, producing an electromagnetic cascade and resulting in emission at GeV-to-TeV energies. In this Letter, we compute the gamma-ray flux from this neutrino source considering various source distances and strengths of the intergalactic magnetic field (IGMF). We find that the associated gamma-ray emission could be observed by existing imaging air Cherenkov telescopes and air shower gamma-ray observatories, unless the strength of the IGMF isB ≳ 3 × 10−13G or the ultrahigh-energy gamma rays are attenuated inside of the source itself. In the latter case, this source is expected to be radio-loud. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  2. Abstract The Galactic diffuse emission (GDE) is formed when cosmic rays leave the sources where they were accelerated, diffusively propagate in the Galactic magnetic field and interact with the interstellar medium and interstellar radiation field. GDE in γ-rays (GDE-γ) has been observed up to subpetaelectronvolt energies, although its origin may be explained by either cosmic-ray nuclei or electrons. Here we show that the γ-rays accompanying the high-energy neutrinos recently observed by the IceCube Observatory from the Galactic plane have a flux that is consistent with the GDE-γ observed by the Fermi-LAT and Tibet ASγ experiments around 1 TeV and 0.5 PeV, respectively. The consistency suggests that the diffuse γ-ray emission above ~1 TeV could be dominated by hadronuclear interactions, although a partial leptonic contribution cannot be excluded. Moreover, by comparing the fluxes of the Galactic and extragalactic diffuse emission backgrounds, we find that the neutrino luminosity of the Milky Way is one-to-two orders of magnitude lower than the average of distant galaxies. This finding implies that our Galaxy has not hosted the type of neutrino emitters that dominates the isotropic neutrino background at least in the past few tens of kiloyears. 
    more » « less
  3. Abstract High-energy neutrino andγ-ray emission has been observed from the Galactic plane, which may come from individual sources and/or diffuse cosmic rays. We evaluate the contribution of these two components through the multimessenger connection between neutrinos andγ-rays in hadronic interactions. We derive maximum fluxes of neutrino emission from the Galactic plane usingγ-ray catalogs, including 4FGL, HGPS, 3HWC, and 1LHAASO, and measurements of the Galactic diffuse emission by Tibet ASγand LHAASO. We find that the IceCube Galactic neutrino flux is larger than the contribution from all resolved sources when excluding promising leptonic sources such as pulsars, pulsar wind nebulae, and TeV halos. Our result indicates that the Galactic neutrino emission is likely dominated by the diffuse emission by the cosmic-ray sea and unresolved hadronicγ-ray sources. In addition, the IceCube flux is comparable to the sum of the flux of nonpulsar sources and the LHAASO diffuse emission especially above ∼30 TeV. This implies that the LHAASO diffuse emission may dominantly originate from hadronic interactions, either as the truly diffuse emission or unresolved hadronic emitters. Future observations of neutrino telescopes and air-showerγ-ray experiments in the Southern hemisphere are needed to accurately disentangle the source and diffuse emission of the Milky Way. 
    more » « less
  4. Abstract High-energy neutrinos are detected by the IceCube Observatory in the direction of NGC 1068, the archetypical type II Seyfert galaxy. The neutrino flux, surprisingly, is more than an order of magnitude higher than theγ-ray upper limits at measured TeV energy, posing tight constraints on the physical conditions of a neutrino production site. We report an analysis of the submillimeter, mid-infrared, and ultraviolet observations of the central 50 pc of NGC 1068 and suggest that the inner dusty torus and the region where the jet interacts with the surrounding interstellar medium (ISM) may be a potential neutrino production site. Based on radiation and magnetic field properties derived from observations, we calculate the electromagnetic cascade of theγ-rays accompanying the neutrinos. When injecting protons with a hard spectrum, our model may explain the observed neutrino flux above ∼10 TeV. It predicts a unique sub-TeVγ-ray component, which could be identified by a future observation. Jet–ISM interactions are commonly observed in the proximity of jets of both supermassive and stellar-mass black holes. Our results imply that such interaction regions could beγ-ray-obscured neutrino production sites, which are needed to explain the IceCube diffuse neutrino flux. 
    more » « less
  5. The origin of most astrophysical neutrinos is unknown, but extragalactic neutrino sources may follow the spatial distribution of the large-scale structure of the universe. Galaxies also follow the same large scale distribution, so establishing a correlation between galaxies and IceCube neutrinos could help identify the origins of the diffuse neutrinos observed by IceCube. Following a preliminary study based on the WISE and 2MASS catalogs, we will investigate an updated galaxy catalog with improved redshift measurements and reduced stellar contamination. Our IceCube data sample consists of track-like muon neutrinos selected from the Northern sky. The excellent angular resolution of track-like events and low contamination with atmospheric muons is necessary for the sensitivity of the analysis. Unlike a point source stacking analysis, the calculation of the cross correlation does not scale with the number of entries in the catalog, making the work tractable for catalogs with millions of objects. We present the development and performance of a two-point cross correlation of IceCube neutrinos with a tracer of the large scale structure. Note: Presented at the 38th International Cosmic Ray Conference (ICRC2023). See arXiv:2307.13047 for all IceCube contributions 
    more » « less