Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ti/TiN coatings are used in a wide range of engineering applications due to their superior properties such as high hardness and toughness. Doping Al into Ti/TiN can further enhance properties and lead to even higher performance. Therefore, studying the atomic‐level behavior of the TiAl/TiAlN interface is important. However, due to the large number of possible combinations for the 50 mol% Al‐doped Ti/TiN system, it is time‐consuming to use the DFT‐based Monte Carlo methods to find the optimal TiAl/TiAlN system with a high work of adhesion. In this study, we use a graph convolutional neural network as an interatomic potential, combined with reinforcement learning, to improve the efficiency of finding optimal structures with a high work of adhesion. By inspecting the features of structures in neural networks, we found that the optimal structures follow a certain pattern of doping Al near the interface. The electronic structure and bonding analysis indicate that the optimal TiAl/TiAlN structures have higher bonding strength. We expect our approach to significantly accelerate the design of advanced ceramic coatings, which can lead to more durable and efficient materials for engineering applications.more » « less
-
Abstract A wide range of deep learning-based machine learning (ML) techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov–Arnold networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such asF1 score for classification and mean square error, and coefficient of determination (R2) for regression of the multilayer perceptron by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced ML techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.more » « lessFree, publicly-accessible full text available March 11, 2026
An official website of the United States government
