- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bedewy, Mostafa (2)
-
Balmuri, Sricharani Rao (1)
-
Cué_Royo, Camila S (1)
-
Djire, Abdoulaye (1)
-
Ghosh, Soumalya (1)
-
Johnson, Denis (1)
-
Levin, Daniel S (1)
-
Marini, Ande_X (1)
-
Martínez_Vásquez, Shakira M (1)
-
Niepa, Tagbo HR (1)
-
Tomaraei, Golnaz_N (1)
-
Usman, Huda (1)
-
Vorp, David_A (1)
-
Weinbaum, Justin_S (1)
-
Yesudoss, David Kumar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Staphylococcus aureus is the leading cause of skin infections in the U.S., and its rapid evolution and resistance to antibiotics create a barrier to effective treatment. In this study, we engineered a composite membrane with bacterial cellulose and carbon nanotubes (BC-CNT) as an electroactive dressing to rapidly eradicate vancomycin-intermediate S. aureus. Nonpathogenic Komagataeibacter sucrofermentans produced the BC membrane at an air-liquid interface. Then, carboxyl-functionalized multi-walled CNTs were integrated into decellularized BC to create stable and electrically conductive BC-CNT dressings. The electric potential and ionic flux across BC-CNT were modeled and standardized via chronoamperometry for experimental validation. We found that treatment with electroactive BC-CNT increases S. aureus sensitivity to vancomycin and prevents macro-scale biofilm formation. The bactericidal efficacy of the composite membrane is consistent with electrochemical stress caused by voltage mediated with BC-CNT. After a single hour of combinatorial electrical and drug treatment, biofilm-forming capacity was inhibited by nearly 92 %. These results advance applications of electrochemistry in medicine and create a new direction to overcome S. aureus infections on skin and soft tissues.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Marini, Ande_X; Tomaraei, Golnaz_N; Weinbaum, Justin_S; Bedewy, Mostafa; Vorp, David_A (, ACS Applied Materials & Interfaces)
An official website of the United States government
