skip to main content


Search for: All records

Award ID contains: 2239524

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 5, 2025
  2. Modern cellular networks are multi-cell and use universal frequency reuse to maximize spectral efficiency. This results in high inter-cell interference. This challenge is growing as cellular networks become three-dimensional with the adoption of unmanned aerial vehicles (UAVs). This is because the strength and number of interference links rapidly increase due to the line-of-sight channels in UAV communications. Existing interference management solutions require each transmitter to know the channel information of interfering signals, rendering them impractical due to excessive signaling overhead. In this article, we propose leveraging deep reinforcement learning for interference management to tackle this shortcoming. In particular, we show that interference can still be effectively mitigated even without knowing its channel information. We then discuss novel approaches to scale the algorithms with linear/sublinear complexity and decentralize them using multi-agent reinforcement learning. By harnessing interference, the proposed solutions enable the continued growth of civilian UAVs. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025