skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2239799

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Impact of ice coverage is significant in controlling the depth-averaged velocity profile and influencing morphological processes in alluvial channels. However, this impact is largely unknown under field conditions. In this work, a numerical method is introduced to compute the depth-averaged velocity profile in irregular cross-sections of ice-covered flows, based on the Shiono-Knight approach. The momentum equation is modified to account for the presence of secondary flows and the ice coverage. The equations are discretized and solved with velocity boundary conditions at the bank and at one vertical. Our approach only requires the cross-section geometry and a single velocity measurement near the high-velocity region, offering a significant advantage in inaccessible locations by avoiding the need to measure the velocity profile in the entire cross-section. The proposed model is then validated using depth-averaged velocity profile and secondary flow patterns from laboratory observations, analytical solution, and Large-Eddy Simulation. Finally, the method is applied to infer depth-averaged velocity profiles in the Red River of the North, United States, to test its performance in meandering sections. The proposed method demonstrates its robustness in reconstructing flow profiles in ice-covered conditions with a minimal amount of available data, which is crucial for assessing erosion risks and managing spring floods in cold regions. 
    more » « less