- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Murugan, Arvind (2)
-
Buse, Salvador (1)
-
Chalk, Cameron (1)
-
Falk, M J (1)
-
Falk, Martin_J (1)
-
Gilpin, W (1)
-
Murugan, A (1)
-
Roach, F D (1)
-
Scellier, Benjamin (1)
-
Shrinivas, Krishna (1)
-
Strupp, Adam_T (1)
-
Winfree, Erik (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
Seki, Shinnosuke (1)
-
Stewart, Jaimie Marie (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The backpropagation method has enabled transformative uses of neural networks. Alternatively, for energy-based models, local learning methods involving only nearby neurons offer benefits in terms of decentralized training, and allow for the possibility of learning in computationally-constrained substrates. One class of local learning methodscontraststhe desired, clamped behavior with spontaneous, free behavior. However, directly contrasting free and clamped behaviors requires explicit memory. Here, we introduce ‘Temporal Contrastive Learning’, an approach that uses integral feedback in each learning degree of freedom to provide a simple form of implicit non-equilibrium memory. During training, free and clamped behaviors are shown in a sawtooth-like protocol over time. When combined with integral feedback dynamics, these alternating temporal protocols generate an implicit memory necessary for comparing free and clamped behaviors, broadening the range of physical and biological systems capable of contrastive learning. Finally, we show that non-equilibrium dissipation improves learning quality and determine a Landauer-like energy cost of contrastive learning through physical dynamics.more » « less
-
Falk, M J; Roach, F D; Gilpin, W; Murugan, A (, Physical review research)Free, publicly-accessible full text available July 11, 2025
-
Chalk, Cameron; Buse, Salvador; Shrinivas, Krishna; Murugan, Arvind; Winfree, Erik (, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)Seki, Shinnosuke; Stewart, Jaimie Marie (Ed.)Life is chemical intelligence. What is the source of intelligent behavior in molecular systems? Here we illustrate how, in contrast to the common belief that energy use in non-equilibrium reactions is essential, the detailed balance equilibrium properties of multicomponent liquid interactions are sufficient for sophisticated information processing. Our approach derives from the classical Boltzmann machine model for probabilistic neural networks, inheriting key principles such as representing probability distributions via quadratic energy functions, clamping input variables to infer conditional probability distributions, accommodating omnidirectional computation, and learning energy parameters via a wake phase / sleep phase algorithm that performs gradient descent on the relative entropy with respect to the target distribution. While the cubic lattice model of multicomponent liquids is standard, the behaviors exhibited by the trained molecules capture both previously-observed phenomena such as core-shell condensate architectures as well as novel phenomena such as an analog of Hopfield associative memories that perform recall by contact with a patterned surface. Our final example demonstrates equilibrium classification of MNIST digits. Experimental implementation using DNA nanostar liquids is conceptually straightforward.more » « less