skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2239805

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data from tide gauges and satellite altimeters are used to provide an up‐to‐date assessment of the mean seasonal cycle in sea level () over most of the global coastal ocean. The tide gauge records, where available, depict a seasonal cycle with complex spatial structure along and across continental boundaries, and an annual oscillation dominating over semiannual variability, except in a few regions (e.g., the northwestern Gulf of Mexico). Comparisons between tide gauge and altimeter data reveal substantial root‐mean‐square differences and only slight improvements in agreement when using along‐track data optimized for coastal applications. Quantification of the uncertainty in the altimeter products, inferred from comparing gridded and along‐track estimates, indicate that differences to tide gauges partly reflect short‐scale features of the seasonal cycle in proximity to the coasts. We additionally probe the seasonal budget using satellite gravimetry‐based manometric estimates and steric terms calculated from the World Ocean Atlas 2023. Focusing on global median values, the sum of the estimated steric and manometric harmonics can explain 65% (respectively 40%) of the annual (semiannual) variance in the coastal observations. We identify several regions, for example, the Australian seaboard, where the seasonal budget is not closed and illustrate that such analysis is mainly limited by the coarse spatial resolution of present satellite‐derived mass change products. For most regions with a sufficiently tight budget closure, we find that although the importance of the manometric term generally increases with decreasing water depth, steric contributions are non‐negligible near coastlines, especially at the annual frequency. 
    more » « less
  2. Abstract We revisit the nature of the ocean bottom pressure (pb) seasonal cycle by leveraging the mounting GRACE‐basedpbrecord and its assimilation in the ocean state estimates produced by the project for Estimating the Circulation and Climate of the Ocean (ECCO). We focus on the mean seasonal cycle from both data and ECCO estimates, examining their similarities and differences and exploring the underlying causes. Despite substantial year‐to‐year variability, the 21‐year period studied (2002–2022) provides a relatively robust estimate of the mean seasonal cycle. Results indicate that thepbannual harmonic tends to dominate but the semi‐annual harmonic can also be important (e.g., subpolar North Pacific, Bellingshausen Basin). Amplitudes and short‐scale phase variability are enhanced near coasts and continental shelves, emphasizing the importance of bottom topography in shaping the seasonal cycle inpb. Comparisons of GRACE and ECCO estimates indicate good qualitative agreement, but considerable quantitative differences remain in many areas. The GRACE amplitudes tend to be higher than those of ECCO typically by 10%–50%, and by more than 50% in extensive regions, particularly around continental boundaries. Phase differences of more than 1 (0.5) months for the annual (semiannual) harmonics are also apparent. Larger differences near coastal regions can be related to enhanced GRACE data uncertainties and also to the absence of gravitational attraction and loading effects in ECCO. Improvements in both data and model‐based estimates are still needed to narrow present uncertainties inpbestimates. 
    more » « less