- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Gingrich, Todd R (2)
-
Nicholson, Schuyler B (2)
-
Strand, Nils E (1)
-
Vroylandt, Hadrien (1)
-
Zima, John P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Well-mixed chemical reaction networks (CRNs) contain many distinct chemical species with copy numbers that fluctuate in correlated ways. While those correlations are typically monitored via Monte Carlo sampling of stochastic trajectories, there is interest in systematically approximating the joint distribution over the exponentially large number of possible microstates using tensor networks or tensor trains. We exploit the tensor network strategy to determine when the steady state of a seven-species gene toggle switch CRN model supports bistability as a function of two decomposition rates, both parameters of the kinetic model. We highlight how the tensor network solution captures the effects of stochastic fluctuations, going beyond mean field and indeed deviating meaningfully from a mean-field analysis. The work furthermore develops and demonstrates several technical advances that will allow steady-states of broad classes of CRNs to be computed in a manner conducive to parameter exploration. We show that the steady-state distributions can be computed via the ordinary density matrix renormalization group (DMRG) algorithm, despite having a non-Hermitian rate operator with a small spectral gap, we illustrate how that steady-state distribution can be efficiently projected to an order parameter that identifies bimodality, and we employ excited-state DMRG to calculate a relaxation timescale for the bistability.more » « lessFree, publicly-accessible full text available August 7, 2026
-
Strand, Nils E; Nicholson, Schuyler B; Vroylandt, Hadrien; Gingrich, Todd R (, The Journal of Chemical Physics)Transition path theory (TPT) offers a powerful formalism for extracting the rate and mechanism of rare dynamical transitions between metastable states. Most applications of TPT either focus on systems with modestly sized state spaces or use collective variables to try to tame the curse of dimensionality. Increasingly, expressive function approximators such as neural networks and tensor networks have shown promise in computing the central object of TPT, the committor function, even in very high-dimensional systems. That progress prompts our consideration of how one could use such a high-dimensional function to extract mechanistic insights. Here, we present and illustrate a straightforward but powerful way to track how individual dynamical coordinates evolve during a reactive event. The strategy, which involves marginalizing the reactive ensemble, naturally captures the evolution of the dynamical coordinate’s distribution, not just its mean reactive behavior.more » « less
An official website of the United States government
