- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Fuchs, Gregory D (2)
-
Choi, Jaehong (1)
-
Geng, Yifei (1)
-
Luo, Jialun (1)
-
Luo, Jianlun (1)
-
McCullian, Brendan (1)
-
Rana, Farhan (1)
-
So, Jae-Pil (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Fujioka, Hiroshi (1)
-
Morkoç, Hadis (1)
-
Schwarz, Ulrich T (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Morkoç, Hadis; Fujioka, Hiroshi; Schwarz, Ulrich T (Ed.)GaN has recently been shown to host bright, photostable, defect single-photon emitters in the 600–700 nm wavelength range that are promising for quantum applications. Our studies have revealed the optical dipole structure, mechanisms associated with optical dipole dephasing, and the spin structure of these emitters. We have also discovered optically detected magnetic resonance (ODMR) in two distinct species of defects. In one group, we found negative optically detected magnetic resonance of a few percent associated with a metastable electronic state, whereas in the other, we found positive optically detected magnetic resonance of up to 30% associated with the ground and optically excited electronic states. We also established coherent control over a single defect’s ground-state spin. In this talk, we will present our results on the basic physics of these defects and also discuss the spin physics associated with the observed ODMR.more » « lessFree, publicly-accessible full text available March 19, 2026
-
So, Jae-Pil; Luo, Jialun; Choi, Jaehong; McCullian, Brendan; Fuchs, Gregory D (, Nano Letters)Silicon vacancy (VSi) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of VSi centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter−cavity interactions for efficient quantum photonic applications.more » « less
An official website of the United States government
