- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Olshevsky, Alex (3)
-
Liu, Yang-Yu (1)
-
Ma, Qianqian (1)
-
Mustafin, A (1)
-
Mustafin, Arsenii (1)
-
Olshevsky, A (1)
-
Pakharev, Aleksei (1)
-
Paschalidis, IC (1)
-
Paschalidis, Ioannis (1)
-
Paschalidis, Ioannis Ch (1)
-
Tian, Haoxing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a new geometric interpretation of Markov Decision Processes (MDPs) with a natural normalization procedure that allows us to adjust the value function at each state without altering the advantage of any action with respect to any policy. This advantage-preserving transformation of the MDP motivates a class of algorithms which we call Reward Balancing, which solve MDPs by iterating through these transformations, until an approximately optimal policy can be trivially found. We provide a convergence analysis of several algorithms in this class, in particular showing that for MDPs for unknown transition probabilities we can improve upon state-of-the-art sample complexity results.more » « lessFree, publicly-accessible full text available March 10, 2026
-
Mustafin, A; Olshevsky, A; Paschalidis, IC (, Transactions on Machine Learning Research)
-
Ma, Qianqian; Liu, Yang-Yu; Olshevsky, Alex (, IEEE Transactions on Automatic Control)
-
Tian, Haoxing; Paschalidis, Ioannis Ch; Olshevsky, Alex (, IEEE Control Systems Letters)
An official website of the United States government

Full Text Available