Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Following a duplication, the resulting paralogs tend to diverge. While mutation and natural selection can accelerate this process, they can also slow it. Here, we quantify the paralog homogenization that is caused by point mutations and interlocus gene conversion (IGC). Among 164 duplicated teleost genes, the median percentage of postduplication codon substitutions that arise from IGC rather than point mutation is estimated to be between 7% and 8%. By differentiating between the nonsynonymous codon substitutions that homogenize the protein sequences of paralogs and the nonhomogenizing nonsynonymous substitutions, we estimate the homogenizing nonsynonymous rates to be higher for 163 of the 164 teleost data sets as well as for all 14 data sets of duplicated yeast ribosomal protein-coding genes that we consider. For all 14 yeast data sets, the estimated homogenizing nonsynonymous rates exceed the synonymous rates.more » « less
-
Abstract We describe POInTbrowse, a web portal that gives access to the orthology inferences made for polyploid genomes with POInT, the Polyploidy Orthology Inference Tool. Ancient, or paleo-, polyploidy events are widely distributed across the eukaryotic phylogeny, and the combination of duplicated and lost duplicated genes that these polyploidies produce can confound the identification of orthologous genes between genomes. POInT uses conserved synteny and phylogenetic models to infer orthologous genes between genomes with a shared polyploidy. It also gives confidence estimates for those orthology inferences. POInTbrowsegives both graphical and query-based access to these inferences from 12 different polyploidy events, allowing users to visualize genomic regions produced by polyploidies and perform batch queries for each polyploidy event, downloading genes trees and coding sequences for orthologous genes meeting user-specified criteria. POInTbrowseand the associated data are online athttps://wgd.statgen.ncsu.edu.more » « less
-
Polyploidy, or whole-genome duplication, is expected to confound the inference of species trees with phyloge- netic methods for two reasons. First, the presence of retained duplicated genes requires the reconciliation of the inferred gene trees to a proposed species tree. Second, even if the analyses are restricted to shared single copy genes, the occurrence of reciprocal gene loss, where the surviving genes in different species are paralogs from the polyploidy rather than orthologs, will mean that such genes will not have evolved under the corresponding species tree and may not produce gene trees that allow inference of that species tree. Here we analyze three different ancient polyploidy events, using synteny-based inferences of orthology and paralogy to infer gene trees from nearly 17,000 sets of homologous genes. We find that the simple use of single copy genes from polyploid organisms provides reasonably robust phylogenetic signals, despite the presence of reciprocal gene losses. Such gene trees are also most often in accord with the inferred species relationships inferred from maximum likelihood models of gene loss after polyploidy: a completely distinct phylogenetic signal present in these genomes. As seen in other studies, however, we find that methods for inferring phylogenetic confidence yield high support values even in cases where the underlying data suggest meaningful conflict in the phylogenetic signals.more » « less
-
Zhang, Jianzhi (Ed.)Hybridization coupled to polyploidy, or allopolyploidy, has dramatically shaped the evolution of flowering plants, teleost fishes, and other lineages. Studies of recently formed allopolyploid plants have shown that the two subgenomes that merged to form that new allopolyploid do not generally express their genes equally. Instead, one of the two subgenomes expresses its paralogs more highly on average. Meanwhile, older allopolyploidy events tend to show biases in duplicate losses, with one of the two subgenomes retaining more genes than the other. Since reduced expression is a pathway to duplicate loss, understanding the origins of expression biases may help explain the origins of biased losses. Because we expect gene expression levels to experience stabilizing selection, our conceptual frameworks for how allopolyploid organisms form tend to assume that the new allopolyploid will show balanced expression between its subgenomes. It is then necessary to invoke phenomena such as differences in the suppression of repetitive elements to explain the observed expression imbalances. Here we show that, even for phenotypically identical diploid progenitors, the inherent kinetics of gene expression give rise to biases between the expression levels of the progenitor genes in the hybrid. Some of these biases are expected to be gene-specific and not give rise to global differences in progenitor gene expression. However, particularly in the case of allopolyploids formed from progenitors with different genome sizes, global expression biases favoring one subgenome are expected immediately on formation. Hence, expression biases are arguably the expectation upon allopolyploid formation rather than a phenomenon needing explanation. In the future, a deeper understanding of the kinetics of allopolyploidy may allow us to better understand both biases in duplicate losses and hybrid vigor.more » « less