skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2241575

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary In two influential contributions, Rosenbaum (2005, 2020a) advocated for using the distances between componentwise ranks, instead of the original data values, to measure covariate similarity when constructing matching estimators of average treatment effects. While the intuitive benefits of using covariate ranks for matching estimation are apparent, there is no theoretical understanding of such procedures in the literature. We fill this gap by demonstrating that Rosenbaum’s rank-based matching estimator, when coupled with a regression adjustment, enjoys the properties of double robustness and semiparametric efficiency without the need to enforce restrictive covariate moment assumptions. Our theoretical findings further emphasize the statistical virtues of employing ranks for estimation and inference, more broadly aligning with the insights put forth by Peter Bickel in his 2004 Rietz lecture. 
    more » « less
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. In this article, we introduce the packagebinsreg, which implements the binscatter methods developed by Cattaneo et al. (2024a, arXiv:2407.15276 [stat.EM]; 2024b,American Economic Review114: 1488–1514). The package comprises seven commands:binsreg, binslogit, binsprobit, binsqreg, binstest binspwc, andbinsregselect. The first four commands implement binscatter plotting, point estimation, and uncertainty quantification (confidence intervals and confidence bands) for least-squares linear binscatter regression (binsreg) and for nonlinear binscatter regression (binslogitfor logit regression,binsprobitfor. probit regression, andbinsqregfor quantile regression). The next two commands focus on pointwise and uniform inference:binstestimplements hypothesis testing procedures for parametric specifications and for nonparametric shape restrictions of the unknown regression function, whilebinspwcimplements multigroup pairwise statistical comparisons. The last command,binsregselect, implements. data-driven number-of-bins selectors. The commands offer binned scatterplots and allow for covariate adjustment, weighting, clustering, and multisample analysis, which is useful when studying treatment-effect heterogeneity in randomizec and observational studies, among many other features. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. Binscatter is a popular method for visualizing bivariate relationships and conducting informal specification testing. We study the properties of this method formally and develop enhanced visualization and econometric binscatter tools. These include estimating conditional means with optimal binning and quantifying uncertainty. We also highlight a methodological problem related to covariate adjustment that can yield incorrect conclusions. We revisit two applications using our methodology and find substantially different results relative to those obtained using prior informal binscatter methods. General purpose software in Python, R, and Stata is provided. Our technical work is of independent interest for the nonparametric partition-based estimation literature. (JEL C13, C14, C18, C51, O31, R32) 
    more » « less
  7. We present a practical guide for the analysis of regression discontinuity (RD) designs in biomedical contexts. We begin by introducing key concepts, assumptions, and estimands within both the continuity‐based framework and the local randomization framework. We then discuss modern estimation and inference methods within both frameworks, including approaches for bandwidth or local neighborhood selection, optimal treatment effect point estimation, and robust bias‐corrected inference methods for uncertainty quantification. We also overview empirical falsification tests that can be used to support key assumptions. Our discussion focuses on two particular features that are relevant in biomedical research: (i) fuzzy RD designs, which often arise when therapeutic treatments are based on clinical guidelines, but patients with scores near the cutoff are treated contrary to the assignment rule; and (ii) RD designs with discrete scores, which are ubiquitous in biomedical applications. We illustrate our discussion with three empirical applications: the effect CD4 guidelines for anti‐retroviral therapy on retention of HIV patients in South Africa, the effect of genetic guidelines for chemotherapy on breast cancer recurrence in the United States, and the effects of age‐based patient cost‐sharing on healthcare utilization in Taiwan. Complete replication materials employing publicly available data and statistical software inPython,RandStataare provided, offering researchers all necessary tools to conduct an RD analysis. 
    more » « less