- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Callies, Jörn (1)
-
Shen, Zhichao (1)
-
Wu, Wenbo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract AbyssalT‐waves are seismo‐acoustic waves originating from abyssal oceans. Unlike subduction‐zone‐generated slopeT‐waves which are generated through multiple reflections between the sea surface and the gently dipping seafloor, the genesis of abyssalT‐waves cannot be explained by the same theory. Several hypotheses, including seafloor scattering, sea surface scattering, and internal‐wave‐induced volumetric scattering, have been proposed to elucidate their genesis and propagation. The elusive mechanism of abyssalT‐waves, particularly at low‐frequencies, hinders their use to quantify ocean temperatures through seismic ocean thermometry (SOT) and estimate oceanic earthquake parameters. Here, using realistic geophysical and oceanographic data, we first conduct numerical simulations to compare synthetic low‐frequency abyssalT‐waves under different hypotheses. Our simulations for the Romanche and Blanco transform faults suggest seafloor scattering as the dominant mechanism, with sea surface and internal waves contributing marginally. Short‐scale bathymetry can significantly enhance abyssalT‐waves across a broad frequency range. Also, observedT‐waves from repeating earthquakes in the Romanche, Chain, and Blanco transform faults exhibit remarkably high repeatability. Given the dynamic nature of sea surface roughness and internal waves, the highly repeatableT‐wave arrivals further support the seafloor scattering as the primary mechanism. The dominance of seafloor scattering makes abyssalT‐waves useable for constraining ocean temperature changes, thereby greatly expanding the data spectrum of SOT. Our observations of repeating abyssalT‐waves in the Romanche and Chain transform faults could provide a valuable data set for understanding Equatorial Atlantic warming. Still, further investigations incorporating high‐resolution bathymetry are warranted to better model abyssalT‐waves for earthquake parameter estimation.more » « less
An official website of the United States government
