Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Connected and autonomous vehicles (CAVs) rely on communication channels to improve safety and efficiency. However, this connectivity leaves them vulnerable to potential cyberattacks, such as false data injection (FDI) attacks. We can mitigate the effect of FDI attacks by designing secure control techniques. However, tuning control parameters is essential for the safety and security of such techniques, and there is no systematic approach to achieving that. In this article, our primary focus is on cooperative adaptive cruise control (CACC), a key component of CAVs. We develop a secure CACC by integrating model-based and learning-based approaches to detect and mitigate FDI attacks in real-time. We analyze the stability of the proposed resilient controller through Lyapunov stability analysis, identifying sufficient conditions for its effectiveness. We use these sufficient conditions and develop a reinforcement learning (RL)-based tuning algorithm to adjust the parameter gains of the controller, observer, and FDI attack estimator, ensuring the safety and security of the developed CACC under varying conditions. We evaluated the performance of the developed controller before and after optimizing parameters, and the results show about a 50% improvement in accuracy of the FDI attack estimation and a 76% enhancement in safe following distance with the optimized controller in each scenario.more » « lessFree, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available July 8, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available March 22, 2026
-
Free, publicly-accessible full text available March 22, 2026
-
The combination of connectivity and automation allows connected and autonomous vehicles (CAVs) to operate autonomously using advanced on-board sensors while communicating with each other via vehicle-to-vehicle (V2V) technology to enhance safety, efficiency, and mobility. One of the most promising features of CAVs is cooperative adaptive cruise control (CACC). This system extends the capabilities of conventional adaptive cruise control (ACC) by facilitating the exchange of critical parameters among vehicles to enhance safety, traffic flow, and efficiency. However, increased connectivity introduces new vulnerabilities, making CACC susceptible to cyber-attacks, including false data injection (FDI) attacks, which can compromise vehicle safety. To address this challenge, we propose a secure observer-based control design leveraging Lyapunov stability analysis, which is capable of mitigating the adverse impact of FDI attacks and ensuring system safety. This approach uniquely addresses system security without relying on a known lead vehicle model. The developed approach is validated through simulation results, demonstrating its effectiveness.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Connected and Autonomous Vehicles (CAVs) have the potential to revolutionize transportation by addressing critical challenges such as safety, energy efficiency, traffic congestion, and environmental impact. Realizing these benefits, however, requires the development of a rigorous testing and verification framework to enable the safe, efficient, and reliable deployment of CAVs across diverse operational scenarios. Despite the growing body of research, there remains a significant gap in review papers that comprehensively summarize recent studies related to the testing and verification of CAVs while identifying current challenges and highlighting future research directions. This paper seeks to address this gap by presenting a comprehensive review of the existing testing and verification frameworks for CAVs and identifying their associated challenges. Key topics covered include scenario generation, verification cost functions, assertion values, and security considerations. Furthermore, the paper highlights limitations within current frameworks, emphasizing the gaps that hinder systematic and comprehensive evaluations.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a novel testing framework based on a model of computation that generates scenarios and attacks in a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verification vector. The framework was applied for testing the performance of two cooperative adaptive cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline controller is one of a traditional design, while the proposed controller uses a resilient design that combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time. The simulation results show that the resilient controller outperforms the traditional controller in terms of maintaining a safe distance, staying below the speed limit, and the accuracy of the FDI estimation.more » « less
An official website of the United States government
