skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2242110

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Southern Ocean's eddy response to changing climate remains unclear, with observations suggesting non‐monotonic changes in eddy kinetic energy (EKE) across scales. Here simulations reappear that smaller‐mesoscale EKE is suppressed while larger‐mesoscale EKE increases with strengthened winds. This change was linked to scale‐wise changes in the kinetic energy cycle, where a sensitive balance between the dominant mesoscale energy sinks—inverse KE cascade, and source—baroclinic energization. Such balance induced a strong (weak) mesoscale suppression in the flat (ridge) channel. Mechanistically, this mesoscale suppression is attributed to stronger zonal jets weakening smaller mesoscale eddies and promoting larger‐scale waves. These EKE multiscale changes lead to multiscale changes in meridional and vertical eddy transport, which can be parameterized using a scale‐dependent diffusivity linked to the EKE spectrum. This multiscale eddy response may have significant implications for understanding and modeling the Southern Ocean eddy activity and transport under a changing climate.

     
    more » « less