Cryptography is crucial in protecting sensitive information and ensuring secure transactions in a time when data security and privacy are major concerns. Traditional cryptography techniques, which depend on mathematical algorithms and secret keys, have historically protected against data breaches and illegal access. With the advent of quantum computers, traditional cryptography techniques are at risk. In this work, we present a cryptography idea using logical phi-bits, which are classical analogues of quantum bits (qubits) and are supported by driven acoustic metamaterials. The state of phi-bits displays superpositions similar to quantum bits, with complex amplitudes and phases. We present a representation of the state vector of single and multi-phi-bit systems. The state vector of multiple phi-bits system lies in a complex exponentially scaling Hilbert space and is used to encode information or messages. By changing the driving conditions of the metamaterial, the information can be encrypted with exceptional security and efficiency. We illustrate experimentally the practicality and effectiveness of encoding and encryption of a message using a 5 phi-bits system and emphasize the scalability of this approach to an
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract N phi-bits system with the same processing time. -
We experimentally demonstrate a topologically protected electroacoustic transistor. We construct a reconfigurable phononic analog of the quantum valley-Hall insulator composed of electrically shunted piezoelectric disks bonded to a patterned plate forming a monolithic structure. The device can be dynamically reconfigured to host one or more topological interface states via breaking inversion symmetry through selective powering of shunt circuits. Above a threshold, the amplitude of wave energy at a chosen location in one topological interface creates a second interface by dynamically switching power between two groups of shunts using relays. This enables the flow of wave energy between two locations in the reconfigured interface analogous to the voltage-controlled electron flow in a field effect transistor. The amplitude of wave energy in the second interface is used for bit abstraction to implement acoustic logic. We illustrate the various states of the transistor and experimentally demonstrate wave-based switching. The proposed electroacoustic transistor is envisioned to find applications in wave-based devices and edge computing in extreme environments and inspire novel technologies leveraging acoustic logic.more » « lessFree, publicly-accessible full text available June 13, 2025
-
Some topographies in plate structures can hide cracks and make it difficult to monitor damage growth. This is because topographical features convert homogeneous structures to heterogeneous one and complicate the wave propagation through such structures. At certain points destructive interference between incident, reflected and transmitted elastic waves can make those points insensitive to the damage growth when adopting acoustics based structural health monitoring (SHM) techniques. A newly developed nonlinear ultrasonic (NLU) technique called sideband peak count – index (or SPC-I) has shown its effectiveness and superiority compared to other techniques for nondestructive testing (NDT) and SHM applications and is adopted in this work for monitoring damage growth in plate structures with topographical features. The performance of SPC-I technique in heterogeneous specimens having different topographies is investigated using nonlocal peridynamics based peri-ultrasound modeling. Three types of topographies – “X” topography, “Y” topography and “XY” topography are investigated. It is observed that “X” and “XY” topographies can help to hide the crack growth, thus making cracks undetectable when the SPC-I based monitoring technique is adopted. In addition to the SPC-I technique, we also investigate the effectiveness of an emerging sensing technique based on topological acoustic sensing. This method monitors the changes in the geometric phase; a measure of the changes in the acoustic wave’s spatial behavior. The computed results show that changes in the geometric phase can be exploited to monitor the damage growth in plate structures for all three topographies considered here. The significant changes in geometric phase can be related to the crack growth even when these cracks remain hidden for some topographies during the SPC-I based single point inspection. Sensitivities of both the SPC-I and the topological acoustic sensing techniques are also investigated for sensing the topographical changes in the plate structures.more » « lessFree, publicly-accessible full text available May 22, 2025
-
Rizzo, Piervincenzo ; Su, Zhongqing ; Ricci, Fabrizio ; Peters, Kara J (Ed.)A newly developed Nonlinear Ultrasonic (NLU) technique called sideband peak count-index (or SPC-I) measures the degree of nonlinearity in materials by counting the sideband peaks above a moving threshold line – larger the SPC-I value, higher is the material nonlinearity. In various published papers, the SPC-I technique has shown its effectiveness in Structural Health Monitoring (SHM) applications. However, the effects of different types of nonlinear phenomenon on the sideband peak generation is yet to be investigated in depth. This work addresses this knowledge gap and investigates the effects of different types of nonlinearity on the SPC-I technique. Three types of nonlinearities (material nonlinearity, structural nonlinearity and contact nonlinearity) are investigated separately through numerical modeling. Numerical modeling results show that the sideband peak values do not increase proportional to the input signal strength thus indicating nonlinear response, and different types of nonlinearities affect the SPC-I measurements differently. For the experimental verification a composite plate with impact-induced damage is considered for investigating the material nonlinearity and structural nonlinearity while a linear elastic aluminum plate is used to examine the contact nonlinearity between the transducers and the plate. The trends observed in the experimental observations matched the numerical model predictions. Monitoring damage growth in topographical structures – formed by inserting different materials in a matrix material is also investigated. In addition to the SPC-I technique an emerging acoustic parameter – “geometric phase change” based on the topological acoustics is also adopted for sensing damage growth in the topographical structures. The performance of SPC-I and topological acoustic sensing techniques as well as the Spectral Amplitude Difference (SAD) parameter for sensing the damage growth in topographical structures are compared and discussed.more » « lessFree, publicly-accessible full text available May 9, 2025
-
Phi-bits, akin to the quantum concept of qubits but in a classical mechanical framework, play a critical role in the development of quantum-analogue computing, and hence, understanding the nonlinear dynamics governing their control and interactions is crucial. These phi-bits, represented by acoustic waves within nonlinearly coupled arrays of waveguides, can exist in coherent superpositions of states. Adjusting external drivers' frequency, amplitude, and phase allows precise control over the phi-bit states. We have devised a discrete element model to analyze and predict the nonlinear response of phi-bits to external drivers, considering various types, strengths, and orders of nonlinearity stemming from intrinsic medium coupling among waveguides and external factors like signal generators, transducers, and ultrasonic couplant assemblies. Notable findings include the influence of nonlinearity type, strength, and order on the complex amplitudes within the coherent superposition of phi-bit states. This investigation serves as a groundwork for controlling design parameters in phi-bit creation, facilitating the preparation and manipulation of state superpositions crucial for developing phi-bit-based quantum analogue information processing platforms.more » « lessFree, publicly-accessible full text available April 13, 2025
-
The Berry phase, a concept of significant interest in quantum and classical mechanics, illuminates the dynamics of physical systems. Our current study explores this phenomenon within a classical granular network, employing an "elastic bit" that serves as a classical counterpart to the quantum bit. This approach establishes a connection between classical and quantum mechanics. By adjusting external forces, we generate an elastic bit within the granular network and map its behavior onto a Bloch sphere, akin to operating quantum logic gates. Varied manipulations of these external drivers yield a spectrum of Berry phases, from trivial (0) to nontrivial (π), unveiling the topological nature of the elastic bit. Crucially, this topological behavior is governed by external manipulations rather than the material or geometric properties of the medium. The nontrivial Berry phases, in particular, highlight energy localization within the granule vibrations, marking a significant insight into system dynamics. This research bridges the gap between the quantum and classical realms and paves the way for designing novel materials with unique properties.more » « lessFree, publicly-accessible full text available April 13, 2025
-
Understanding the control of phi-bits, akin to qubits, is crucial for developing quantum-inspired computing. Phi-bits, or two states of an acoustic wave in coupled waveguides, can be in a superposition of states. Our experiments showed that external drivers' frequency, amplitude, and phase influence phi-bit states. We developed a discrete element model to predict phi-bit responses under varying nonlinear conditions, influenced by the intrinsic medium coupling the waveguides and external factors like signal generators and transducers. The study reveals that nonlinearity and damping significantly affect the amplitude and phase of phi-bit states, with a notable impact on their predictability and stability, particularly at high damping levels. These findings are crucial to manipulating phi-bits for quantum-inspired information processing, highlighting the importance of optimizing nonlinearity and damping to control phi-bit states.more » « lessFree, publicly-accessible full text available April 12, 2025
-
In quantum computing and information technology, the coherent superposition of states is an essential topic for realizing the physical state of data processing and storage. The fundamentals of current technology, a quantum bit, have limitations due to the collapse and decoherence of wave function, which hinders the superposition of states. We eliminate the limitations by introducing the elastic bit generated through the Hertz-type nonlinearity of granular beads. This study shows the experimental formation of the elastic bit in a coupled granular network manipulated by external harmonic excitation. The excitation generates a phase-dependent dynamic movement, and mapping onto the energy states of the linear vibration modes forms the coherent superposition of states. This state vector component comes from the amplitude of the coherent states, which is projected into the Hilbert space through time dependency. The coherent states represent an actual amplitude, which makes the elastic bit susceptible to decoherence. The elastic bit also demonstrates quantum operation, showcasing the Hadamard gate, which maps one superposed state to another. These characteristics of the elastic bit pave the way for sustainable quantum computation and data storage.more » « lessFree, publicly-accessible full text available April 12, 2025
-
We herein investigate the scattering of orthogonal counterpropagating waves and one-way propagating bulk waves in discrete acoustic superlattices subjected to a scattering potential applied to one of the superlattice unit cells. We demonstrate theoretically that the orthogonality of counterpropagating modes does not provide robust protection against backscattering. By contrast, the one-way propagating modes do satisfy a no-reflection condition, i.e., they exhibit immunity to backscattering, for a wide range of applied scattering potentials, which represent defects and disorder.more » « lessFree, publicly-accessible full text available April 3, 2025
-
Phi-bits are classical mechanical analogues of qubits. Comprehending the nonlinear phenomena that underlie the control and relationships between phi-bits is of utmost importance for advancing phi-bit-based quantum-analogue computing systems. Phi-bits are acoustic waves in externally driven nonlinearly coupled arrays of waveguides, that can exist in a coherent superposition of two states. Tuning the frequency, amplitude, and phase of external drivers is a means of controlling the phi-bit states. We have developed a discrete element model to analyze and predict the nonlinear phi-bit response to external drivers that may result from different types, strengths, and orders of nonlinearity due to the presence of (i) intrinsic medium (epoxy) coupling the waveguides and (ii) external factors such as signal generators/transducers/ultrasonic couplant assembly. Key findings include the impact of nonlinearity type, strength, and order as well as damping on the modulus and phases of the complex amplitudes of the phi-bit coherent superposition of states. This research serves as an exploration for control of design parameters in the creation of phi-bits, which will enable the preparation and manipulation of superpositions of states essential for developing phi-bit-based quantum analogue information processing platforms.more » « lessFree, publicly-accessible full text available March 6, 2025