- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Freund, Stephen N (2)
-
Berger, Emery D (1)
-
Flanagan, Cormac (1)
-
Levin, Kyla H (1)
-
van_Kempen, Nicolas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Aldrich, Jonathan (1)
-
Salvaneschi, Guido (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like why is x null?. To handle these queries, ChatDBG grants the LLM autonomy to take the wheel: it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.more » « lessFree, publicly-accessible full text available June 19, 2026
-
Flanagan, Cormac; Freund, Stephen N (, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)Aldrich, Jonathan; Salvaneschi, Guido (Ed.)Rely-guarantee (RG) logic uses thread interference specifications (relies and guarantees) to reason about the correctness of multithreaded software. Unfortunately, RG logic requires each function postcondition to be "stabilized" or specialized to the behavior of other threads, making it difficult to write function specifications that are reusable at multiple call sites. This paper presents mover logic, which extends RG logic to address this problem via the notion of atomic functions. Atomic functions behave as if they execute serially without interference from concurrent threads, and so they can be assigned more general and reusable specifications that avoid the stabilization requirement of RG logic. Several practical verifiers (Calvin-R, QED, CIVL, Armada, Anchor, etc.) have demonstrated the modularity benefits of atomic function specifications. However, the complexity of these systems and their correctness proofs makes it challenging to understand and extend these systems. Mover logic formalizes the central ideas of reduction in a declarative program logic that provides a foundation for future work in this area.more » « less
An official website of the United States government
