- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chia, Nai-Hui (1)
-
Fu, Honghao (1)
-
Song, Fang (1)
-
Yao, Penghui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, achieving verifiable quantum advantage on a NISQ device has emerged as an important open problem in quantum information. The sampling-based quantum advantages are not known to have efficient verification methods. This article investigates the verification of quantum advantage from a cryptographic perspective. We establish a strong connection between the verifiability of quantum advantage and cryptographic and complexity primitives, including efficiently samplable, statistically far but computationally indistinguishable pairs of (mixed) quantum states (EFI), pseudorandom states (PRS), and variants of minimum circuit size problems (MCSP). Specifically, we prove that a) a sampling-based quantum advantage is either verifiable or can be used to buildEFIand evenPRSand b) polynomial-time algorithms for a variant ofMCSPwould imply efficient verification of quantum advantages. Our work shows that the quest for verifiable quantum advantages may lead to applications of quantum cryptography, and the construction of quantum primitives can provide new insights into the verifiability of quantum advantages.more » « lessFree, publicly-accessible full text available March 31, 2027
An official website of the United States government
