skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2243793

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A series of new isoxazole‐substituted aryl iodides1 a–1 dhave been synthesized by DIB‐mediated [3+2] cycloaddition reaction of 2‐iodo‐1,3‐bis(prop‐2‐yn‐1‐yloxy) benzene (4) with corresponding benzaldehyde oximes5 a–5 d. Structure of the synthesized aryl iodides1were characterized by IR,1H NMR,13C NMR and HRMS. The structure of1 awas also confirmed by single‐crystal X‐ray crystallography. Further, catalytic activity of iodoarenes1 a–1 dwas screened for the oxidation of hydroquinones and sulfides. On oxidation using aryl iodides1withm‐CPBA as terminal oxidant, hydroquinones afforded benzoquinones while sulfides gave corresponding sulfoxides in good to excellent yields. Iodoarene1 bshowed the best catalytic activity for the oxidation of sulfides and hydroquinones. Moreover, iodoarene1 b, was also utilized for α‐oxytosylation of acetophenones. 
    more » « less
  2. Abstract Hypervalent iodine compounds have found broad application in modern organic chemistry as reagents and catalysts. Cyclic hypervalent iodine reagents based on the benziodoxole heterocyclic system have higher stability compared to their acyclic analogues, which makes possible the preparation and safe handling of the reagents with special ligands such as azido, cyano, and trifluoromethyl groups. Numerous iodine‐substituted benziodoxole derivatives have been prepared and utilized as reagents for transfer of the substituent on hypervalent iodine to organic substrate. Reactions of these reagents with organic substrates can be performed under metal‐free conditions, in the presence of transition metal catalysts, or using photocatalysts under photoirradiation conditions. In this review, we focus on the most recent synthetic applications of cyclic hypervalent iodine(III) reagents with the following ligands: N3, NHR, CN, CF3, SCF3, OR, OAc, ONO2, and C(=N2)CO2R. The review covers literature published mainly in the last 5 years. 
    more » « less
  3. Koutentis, Panayiotis A (Ed.)
    Free, publicly-accessible full text available April 12, 2026
  4. Koutentis, Panayiotis A (Ed.)
    Free, publicly-accessible full text available April 12, 2026
  5. Free, publicly-accessible full text available March 23, 2026
  6. Kurz, Thomas (Ed.)
    Free, publicly-accessible full text available February 1, 2026
  7. This review summarizes structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The higher thermal stability of hypervalent heterocycles, as compared to their acyclic analogs, adds special feature to their chemistry. 
    more » « less
  8. This study provides a greener peptide coupling method using triarylphosphine and recyclable bicyclic benziodazolone, which acts as an oxidant for phosphine as well as base. 
    more » « less