skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2243809

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Droughts are a natural hazard of growing concern as they are projected to increase in frequency and severity for many regions of the world. The identification of droughts and their future characteristics is essential to building an understanding of the geography and magnitude of potential drought change trajectories, which in turn is critical information to manage drought resilience across multiple sectors and disciplines. Adding to this effort, we developed a dataset of global historical and projected future drought indices over the 1980–2100 period based on downscaled CMIP6 models across multiple shared socioeconomic pathways (SSP). The dataset is composed of two indices: the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) for 23 downscaled global climate models (GCMs) (0.25-degree resolution), including historical (1980–2014) and future projections (2015–2100) under four climate scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The drought indices were calculated for 3-, 6- and 12-month accumulation timescales and are available as gridded spatial datasets in a regular latitude-longitude format at monthly time resolution. 
    more » « less
  2. Abstract. Wildfire is a critical ecological disturbance in terrestrial ecosystems. Australia, in particular, has experienced increasingly large and severe wildfires over the past 2 decades, while globally fire risk is expected to increase significantly due to projected increases in extreme weather and drought conditions. Therefore, understanding and predicting fire severity is critical for evaluating current and future impacts of wildfires on ecosystems. Here, we first introduce a vegetation-type-specific fire severity classification applied to satellite imagery, which is further used to predict fire severity during the fire season (November to March) using antecedent drought conditions, fire weather (i.e. wind speed, air temperature, and atmospheric humidity), and topography. Compared to fire severity maps from the fire extent and severity mapping (FESM) dataset, we find that fire severity prediction results using the vegetation-type-specific thresholds show good performance in extreme- and high-severity classification, with accuracies of 0.64 and 0.76, respectively. Based on a “leave-one-out” cross-validation experiment, we demonstrate high accuracy for both the fire severity classification and the regression using a suite of performance metrics: the determination coefficient (R2), mean absolute error (MAE), and root-mean-square error (RMSE), which are 0.89, 0.05, and 0.07, respectively. Our results also show that the fire severity prediction results using the vegetation-type-specific thresholds could better capture the spatial patterns of fire severity and have the potential to be applicable for seasonal fire severity forecasts due to the availability of seasonal forecasts of the predictor variables. 
    more » « less
  3. Droughts are a natural phenomenon with significant impact on society and the environment. Their frequency and severity are projected to increase toward the end of the century, which makes urgent the analysis of future drought characteristics to inform stakeholders and to allow the investigation of their effects on different domains. In this study, we developed Future Global Drought Layers composed of SPI and SPEI indices for 23 GCMs of the NEX-GDDP-CMIP6 dataset, including historical (1980-2014) data and 4 future projections (2015-2100) under four climate scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The drought indices were calculated for 3-, 6- and 12-month timescales. The data is gridded in a regular latitude-longitude format, with a spatial resolution of 0.25º (~25 km) and monthly time resolution. 
    more » « less