Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fervidibacter sacchariis an aerobic hyperthermophile belonging to the phylumArmatimonadotathat degrades a variety of polysaccharides. Its genome encodes 117 enzymes with one or more annotated glycoside hydrolase (GH) domain, but the roles of these putative GHs in polysaccharide catabolism are poorly defined. Here, we describe oneF. saccharienzyme encoding a GH10 domain, Fsa02490Xyn, that was previously shown to be active onMiscanthus, oat β‐glucan, and beech‐wood xylan, with optimal activity at 90–100 °C. We show that Fsa02490Xyn is also active on birch‐wood xylan and gellan gum. The pH range on beech‐wood xylan was 4.5 to 9.5 (pHopt7.0–8.0). Fsa024940Xyn had aKmof 2.375 mm,Vmaxof 1250 μm·min−1, andkcat/Kmof 1.259 × 104 s−1·m−1when using apara‐nitrophenyl‐𝛽‐xylobioside assay. A phylogenetic analysis of GH10 family enzymes revealed a large clade of enzymes from diverse members of the classFervidibacteria, including Fsa02490Xyn and a second enzyme fromF. sacchari, with apparent horizontal gene transfer withinFervidibacteriaand betweenFervidibacteriaand thermophilicBacillota. This study establishes Fsa02490Xyn as a hyperthermophilic GH10 enzyme with endo‐β‐1,4‐xylanase activity and identifies a large clade of homologous GH10 enzymes within the classFervidibacteria. Impact statementThe depolymerization of xylan at high temperatures is important because this process limits the degradation of polysaccharides in nature and the synthesis of biofuels from plant wastes. Our study is also important becauseF. sacchariis one of only a few cultivated members of theArmatimonadota, which are polysaccharide‐degradation specialists.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Roux, Simon (Ed.)ABSTRACT We report the genome sequence ofBacillus subtilisstrain YB955, a prophage-cured strain used as a model in DNA repair, bacterial physiology, and mutagenesis studies. The assembled and annotated draft genome contains 4,031 coding genes, 5 rRNAs, and 73 tRNAs. Compared to 168, YB955 has a 134,402 bp deletion.more » « less
-
Sporulation is a survival mechanism employed by Firmicutes, includingBacillus subtilis, when facing stressful conditions of growth (e.g., starvation). In this bacterium, the transcription repair coupling factor, Mfd, has been shown to play pivotal roles in sporulation transcription-coupled DNA repair and stress-associated mutagenesis. Recent studies have also revealed an unexpected role of Mfd in regulating gene expression duringB. subtilissporulation. This study examines the effects ofB. subtilisMfd deficiency on the expression of sporulation genes, sporulation efficiency, and spore morphology. In the absence of exogenous DNA damage, we found that Mfd deficiency does not compromise spore germination outgrowth; however, the loss of this factor promoted spore morphological defects and decreased sporulation efficiency. Also, our results confirmed an anomalous pattern of expression of sporulation genes in cells lacking Mfd. These results showed that Mfd influences bacterial physiology beyond DNA repair of actively transcribed genes.more » « lessFree, publicly-accessible full text available October 17, 2026
-
Shame_Caroline (Ed.)With the growth of the quantum biology field, the study of magnetic field (MF) effects on biological processes and their potential therapeutic applications has attracted much attention. However, most biologists lack the experience needed to construct an MF exposure apparatus on their own, no consensus standard exists for exposure methods, and protocols for model organisms are sorely lacking. We aim to provide those interested in entering the field with the ability to investigate static MF effects in their own research. This protocol covers how to design, build, calibrate, and operate a static MF exposure chamber (MagShield apparatus), with instructions on how to modify parameters to other specific needs. The MagShield apparatus is constructed of mu-metal (which blocks external MFs), allowing for the generation of experimentally controlled MFs via 3-axial Helmholtz coils. Precise manipulation of static field strengths across a physiologically relevant range is possible: nT hypomagnetic fields, μT to < 1 mT weak MFs, and moderate MFs of several mT. An integrated mu-metal partition enables different control and experimental field strengths to run simultaneously. We demonstrate (with example results) how to use the MagShield apparatus with Xenopus, planarians, and fibroblast/fibrosarcoma cell lines, discussing the modifications needed for cell culture systems; however, the apparatus is easily adaptable to zebrafish, C. elegans, and 3D organoids. The operational methodology provided ensures uniform and reproducible results, affording the means for rigorous examination of static MF effects. Thus, this protocol is a valuable resource for investigators seeking to explore the intricate interplay between MFs and living organisms.more » « less
An official website of the United States government
