- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alaniz, Cade (1)
-
Cecil, Adam_J (1)
-
Dokholyan, ed., Nikolay (1)
-
Gurumurthi, Mukund (1)
-
Lane, Kaylee_S (1)
-
Maughan, Annalise_E (1)
-
Pak, Alexander_J (1)
-
Remaut, Han (1)
-
Schulze, Maxwell_C (1)
-
Shotwell, Austin_M (1)
-
Sogues, Adrià (1)
-
Yox, Philip (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study demonstrates a rapid, dry, microwave‐assisted (MW) synthesis method that enables preparation of halide argyrodites ( , , ) in less than 20 min. The structures and ion transport properties of the resulting materials are compared with those synthesized by conventional solid‐state synthesis methods. The microwave‐assisted method leads to increased site disorder and elevated Arrhenius prefactors (), which lead to an order of magnitude improvement in the 30 ionic conductivity of MW‐. X‐ray pair distribution function analysis (XPDF) reveals significant rotational disorder of the units, which is impacted by the synthesis method, choice of halide, and presence of / site disorder. These rotational displacements are strongly correlated with ion transport, specifically and entropy of migration (). Overall, this study demonstrates a rapid synthesis route for preparing high‐quality halide argyrodite solid‐state electrolytes in less than 20 min, and further unravels atomistic insights into the interplay of structural disorder, rotational dynamics, and ion transport mechanisms.more » « less
-
Cecil, Adam_J; Sogues, Adrià; Gurumurthi, Mukund; Lane, Kaylee_S; Remaut, Han; Pak, Alexander_J; Dokholyan, ed., Nikolay (, PNAS Nexus)Abstract Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from Bacillus anthracis, has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization. We used feature importance analysis to filter out unnecessary features and engineered remaining features to regularize the feature landscape and encourage learning of the depolymerization mechanism. We find that, while not enforced in training, a gradient-boosting decision tree is able to reproduce the experimental activities of inhibitory Nbs while maintaining high classification accuracy, whereas neural networks were only able to discriminate between classes. Further feature analysis revealed that inhibitory Nbs restrain Sap motions toward an inhibitory conformational state described by domain–domain clamping and induced twisting of domains normal to the lattice plane. We believe these motions drive Sap lattice depolymerization and can be used as design targets for improved Sap-inhibitory Nbs. Finally, we expect our method of study to apply to S-layers that serve as virulence factors in other pathogens, paving the way forward for Nb therapeutics that target depolymerization mechanisms.more » « less
An official website of the United States government
