skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2244690

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gelatinous zooplankton serve diverse ecological roles in shelf food webs—from grazers to predators. However, their spatial niches are poorly resolved, especially at detailed taxonomic levels, due to conventional techniques that are unable to measure distributions at fine spatial scales. Seasonal in situ imaging transects across the dynamic northern Gulf of Mexico demonstrated that taxonomic diversity of gelatinous zooplankton increases with stratification and habitat heterogeneity. Taxa displayed low spatial niche overlap (~ 10%, Schoener'sD), independent of season (stratified, river‐influenced, and well mixed), and even when associated with similar water mass properties. This suggests that oceanography structures the distributions of gelatinous organisms and water mass preferences, but ecological interactions among taxa generate distinct taxon‐specific spatial niches. Although automated image classification algorithms currently prioritize broad taxonomic groups, detailed identifications and improved resolution of interactions (predator–prey, competition, etc.) may underlie a predictive framework for gelatinous abundances and diversity. 
    more » « less
  2. Andersen, Ken (Ed.)
    Abstract Zooplankton composition and distribution influence prey quality and availability for higher trophic levels, yet ecological forces structuring communities are not often resolved on spatial scales relevant to predator–prey encounters (1–10 m). Because continental shelf water columns are often vertically stratified, fine-scale interactions may influence overall biological productivity. Using a towed imaging system, we measured meso- and macrozooplankton abundances (>2.2 mm equivalent spherical diameter) in the South Atlantic Bight between the 25 and 45 m isobaths in August 2021. Zooplankton were parsed into four key traits (size, carbon content, trophic strategy, and swimming speed), and buoyancy frequency was used to identify discrete vertical oceanographic zones. Trait diversity was less variable in mixed waters due to the dominance of low carbon content zooplankton or passive swimmers. Upwelling intrusions generated high chlorophyll-a and sharp stratification, which favoured high-carbon, fast swimming zooplankton. Trait group abundances were often higher in these deeper, sharply stratified waters, suggesting that intrusions generally favour secondary production, with gelatinous organisms gradually becoming more dominant as the pycnocline weakens. The distribution of size classes, however, did not change among water masses. Stratification and mixing generate distinct environments and consistent trait assemblages, potentially improving predictions of community responses to oceanographic structure. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026