skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2244715

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although hydropower produces a relatively small portion of the electricity we use in the United States, it is a flexible and dispatchable resource that serves various critical functions for managing the electricity grid. Climate-induced changes to water availability will affect future hydropower production, and such changes could impact how the areas where the supply and demand of electricity are balanced, called balancing authority areas, are able to meet decarbonization goals. We calculate hydroclimate risk to hydropower at the balancing authority scale, which is previously underexplored in the literature and has real implications for decarbonization and resilience-building. Our results show that, by 2050, most balancing authority areas could experience significant changes in water availability in areas where they have hydropower. Balancing areas facing the greatest changes are located in diverse geographic areas, not just the Western and Northwestern United States, and vary in hydropower generation capacity. The range of projected changes experienced within each balancing area could exacerbate or offset existing hydropower generation deficits. As power producers and managers undertake increasing regional cooperation to account for introducing more variable renewable energy into the grid, analysis of risk at this regional scale will become increasingly salient. 
    more » « less
  2. Abstract Global food systems must be a part of strategies for greenhouse gas (GHG) mitigation, optimal water use, and nitrogen pollution reduction. Insights from research in these areas can inform policies to build sustainable food systems yet limited work has been done to build understanding around whether or not sustainability efforts compete with supply chain resilience. This study explores the interplay between food supply resilience and environmental impacts in US cities, within the context of global food systems’ contributions to GHG emissions, water use, and nitrogen pollution. Utilizing county-level agricultural data, we assess the water use, GHG emissions, and nitrogen losses of urban food systems across the US, and juxtapose these against food supply resilience, represented by supply chain diversity. Our results highlight that supply chain resilience and sustainability can simultaneously exist and are not necessarily in competition with each other. We also found a significant per capita footprint in the environmental domains across Southern cities, specifically those along the Gulf Coast and southern Great Plains. Food supply chain resilience scores ranged from 0.18 to 0.69, with lower scores in the southwest and Great Plains, while northeastern and Midwestern regions demonstrated higher resilience. We found several cities with high supply chain resilience and moderate or low environmental impacts as well as areas with high impacts and low resilience. This study provides insights into potential trade-offs and opportunities for creating sustainable urban food systems in the US, underscoring the need for strategies that consider both resilience and environmental implications. 
    more » « less
  3. Data and working scripts for publication;Hydroclimate risk to electricity balancing throughout the U.S.&; 
    more » « less
  4. Flooding is a natural hazard that touches nearly all facets of the globe and is expected to become more frequent and intensified due to climate and land-use change. However, flooding does not impact all individuals equally. Therefore, understanding how flooding impacts distribute across populations of different socioeconomic and demographic backgrounds is vital. One approach to reducing flood risk on people is using indicators, such as social vulnerability indices and flood exposure metrics, to inform decision-making for flood risk management. However, such indicators can face the scale and zonal effect produced by the Modifiable Areal Unit Problem (MAUP). This study investigates how the U.S. Census block group, tract, and county scale selection impacts social vulnerability and flood exposure outcomes within coastal Virginia, USA. Here we show how (1) scale selection can obstruct our understanding of drivers of vulnerability, (2) increasingly aggregated scales significantly undercount highly vulnerable populations, and (3) hotspot clusters of social vulnerability and flood exposure can identify variable priority areas for current and future flood risk reduction. Study results present considerations about using such indicators, given the real-life consequences that can occur due to the MAUP. The results of this work warrant understanding the implications of scale selection on research methodological approaches and what this means for practitioners and policymakers that utilize such information to help guide flood mitigation strategies. 
    more » « less