skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2244984

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global modeling of aerosol‐particle number and size is important for understanding aerosol effects on Earth's climate and air quality. Fine‐resolution global models are desirable for representing nonlinear aerosol‐microphysical processes, their nonlinear interactions with dynamics and chemistry, and spatial heterogeneity. However, aerosol‐microphysical simulations are computationally demanding, which can limit the achievable global horizontal resolution. Here, we present the first coupling of the TwO‐Moment Aerosol Sectional (TOMAS) microphysics scheme with the High‐Performance configuration of the GEOS‐Chem model of atmospheric composition (GCHP), a coupling termed GCHP‐TOMAS. GCHP's architecture allows massively parallel GCHP‐TOMAS simulations including on the cloud, using hundreds of computing cores, faster runtimes, more memory, and finer global horizontal resolution (e.g., 25 km × 25 km, 7.8 × 105model columns) versus the previous single‐node capability of GEOS‐Chem‐TOMAS (tens of cores, 200 km × 250 km, 1.3 × 104model columns). GCHP‐TOMAS runtimes have near‐ideal scalability with computing‐core number. Simulated global‐mean number concentrations increase (dominated by free‐tropospheric over‐ocean sub‐10‐nm‐diameter particles) toward finer GCHP‐TOMAS horizontal resolution. Increasing the horizontal resolution from 200 km × 200–50 km × 50 km increases the global monthly mean free‐tropospheric total particle number by 18.5%, and over‐ocean sub‐10‐nm‐diameter particles by 39.8% at 4‐km altitude. With a cascade of contributing factors, free‐tropospheric particle‐precursor concentrations increase (32.6% at 4‐km altitude) with resolution, promoting new‐particle formation and growth that outweigh coagulation changes. These nonlinear effects have the potential to revise current understanding of processes controlling global aerosol number and aerosol impacts on Earth's climate and air quality. 
    more » « less
  2. Abstract The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2under cloudy sky conditions. 
    more » « less
  3. Abstract. Accurate representation of the hourly variation in the NO2-column-to-surface relationship is essential for interpreting geostationary observations of NO2 columns. Previous research indicated inconsistencies in this hourly variation. This study employs the high-performance configuration of the GEOS-Chem model (GCHP) to analyze daytime hourly NO2 total columns and surface concentrations during summer. We use measurements from globally distributed Pandora sun photometers and aircraft observations over the United States. We correct Pandora total NO2 vertical columns for (1) hourly variations in effective temperature driven by vertically resolved contributions to the total column and (2) changes in local solar time along the Pandora line of sight. These corrections increase the total NO2 columns by 5–6 × 1014 molec. cm−2 at 09:00 and 18:00 across all sites. Fine-scale simulations from GHCP (∼12 km) reduce the normalized bias (NB) against Pandora total NO2 columns from 19 % to 10 % and against aircraft measurements from 25 % to 13 % in Maryland, Texas, and Colorado. Similar reductions are observed in NO2 columns over the eastern US (17 % to 9 %), the western US (22 % to 14 %), Europe (24 % to 15 %), and Asia (29 % to 21 %) when compared to 55 km simulations. Our analysis attributes the weaker hourly variability in the total NO2 column to (1) hourly variations in column effective temperature, (2) local solar time changes along the Pandora line of sight, and (3) differences in hourly NO2 variability from different atmospheric layers, with the lowest 500 m exhibiting greater variability, while the dominant residual column above 500 m exhibits weaker variability. 
    more » « less