- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0010000001000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Christov, Ivan C (2)
-
Feng, Jie (1)
-
Huang, Anxu (1)
-
Pande, Shrihari D (1)
-
Wang, Ziyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Altenbach, Holm (1)
-
Eremeyev, Victor A (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deformable microchannels emulate a key characteristic of soft biological systems and flexible engineering devices: the flow-induced deformation of the conduit due to slow viscous flow within. Elucidating the two-way coupling between oscillatory flow and deformation of a three-dimensional (3-D) rectangular channel is crucial for designing lab-on-a-chip and organ-on-a-chip microsystems and eventually understanding flow–structure instabilities that can enhance mixing and transport. To this end, we determine the axial variations of the primary flow, pressure and deformation for Newtonian fluids in the canonical geometry of a slender (long) and shallow (wide) 3-D rectangular channel with a deformable top wall under the assumption of weak compliance and without restriction on the oscillation frequency (i.e. on the Womersley number). Unlike rigid conduits, the pressure distribution is not linear with the axial coordinate. To validate this prediction, we design a polydimethylsiloxane-based experimental platform with a speaker-based flow-generation apparatus and a pressure acquisition system with multiple ports along the axial length of the channel. The experimental measurements show good agreement with the predicted pressure profiles across a wide range of the key dimensionless quantities: the Womersley number, the compliance number and the elastoviscous number. Finally, we explore how the nonlinear flow–deformation coupling leads to self-induced streaming (rectification of the oscillatory flow). Following Zhang and Rallabandi (J. Fluid Mech., vol. 996, 2024, p. A16), we develop a theory for the cycle-averaged pressure based on the primary problem’s solution, and we validate the predictions for the axial distribution of the streaming pressure against the experimental measurements.more » « lessFree, publicly-accessible full text available November 4, 2026
-
Wang, Ziyu; Christov, Ivan C (, Springer Nature Switzerland)Altenbach, Holm; Eremeyev, Victor A (Ed.)We propose an analytical approach to solving nonlocal generalizations of the Euler–Bernoulli beam. Specifically, we consider a version of the governing equation recently derived under the theory of peridynamics. We focus on the clamped–clamped case, employing the natural eigenfunctions of the fourth derivative subject to these boundary conditions. Static solutions under different loading conditions are obtained as series in these eigenfunctions. To demonstrate the utility of our proposed approach, we contrast the series solution in terms of fourth-order eigenfunctions to the previously obtained Fourier sine series solution. Our findings reveal that the series in fourth-order eigenfunctions achieve a given error tolerance (with respect to a reference solution) with ten times fewer terms than the sine series. The high level of accuracy of the fourth-order eigenfunction expansion is due to the fact that its expansion coefficients decay rapidly with the number of terms in the series, one order faster than the Fourier series in our examples.more » « lessFree, publicly-accessible full text available June 18, 2026
An official website of the United States government
