- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Ping (5)
-
Lu, Chang (2)
-
Ning, Yue (2)
-
Shi, Tian (2)
-
Yang, Xinming (2)
-
Bian, Yali (1)
-
Esakia, Andy (1)
-
Li, Tianyi (1)
-
Nie, Dong (1)
-
Reddy, Chandan (1)
-
Reddy, Chandan K. (1)
-
Sood, Palak (1)
-
Zeng, Kangping (1)
-
Zhang, Wenlong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sood, Palak; Yang, Xinming; Wang, Ping (, IEEE)
-
Li, Tianyi; Wang, Ping; Shi, Tian; Bian, Yali; Esakia, Andy (, Proceedings of the AAAI Conference on Human Computation and Crowdsourcing)This paper explores the application of sensemaking theory to support non-expert crowds in intricate data annotation tasks. We investigate the influence of procedural context and data context on the annotation quality of novice crowds, defining procedural context as completing multiple related annotation tasks on the same data point, and data context as annotating multiple data points with semantic relevance. We conducted a controlled experiment involving 140 non-expert crowd workers, who generated 1400 event annotations across various procedural and data context levels. Assessments of annotations demonstrate that high procedural context positively impacts annotation quality, although this effect diminishes with lower data context. Notably, assigning multiple related tasks to novice annotators yields comparable quality to expert annotations, without costing additional time or effort. We discuss the trade-offs associated with procedural and data contexts and draw design implications for engaging non-experts in crowdsourcing complex annotation tasks.more » « less
-
Zhang, Wenlong; Zeng, Kangping; Yang, Xinming; Shi, Tian; Wang, Ping (, ACM)
-
Lu, Chang; Reddy, Chandan K.; Wang, Ping; Nie, Dong; Ning, Yue (, IEEE Transactions on Knowledge and Data Engineering)