skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2246659

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let$$p_{1},\ldots ,p_{n}$$ p 1 , , p n be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ T 1 , , T n be a set of$$\delta $$ δ -tubes such that$$T_{j}$$ T j passes through$$p_{j}$$ p j . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ p 1 , , p n [ 0 , 1 ] 2 along with a line$$\ell _{j}$$ j through each point$$p_{j}$$ p j , there exist$$j\neq k$$ j k for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ d ( p j , k ) n 2 / 3 + o ( 1 ) . It follows from the latter result that any set of$$n$$ n points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ n 7 / 6 + o ( 1 ) . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  2. Free, publicly-accessible full text available February 15, 2026