- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0000000006000000
- More
- Availability
-
24
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Le (5)
-
Xia, Panqiu (4)
-
Cheng, Ouyang (1)
-
Foondun, Mohammud (1)
-
Hu, Yaozhong (1)
-
Huang, Jingyu (1)
-
Kuzgun, Sefika (1)
-
Mueller, Carl (1)
-
Ouyang, Cheng (1)
-
Salins, Michael (1)
-
Tindel, Samy (1)
-
Vickery, William (1)
-
Wang, Xiong (1)
-
Zheng, Jiayu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Chen, Le; Xia, Panqiu (, Annals of probability)Free, publicly-accessible full text available July 24, 2026
-
Chen, Le; Ouyang, Cheng; Tindel, Samy; Xia, Panqiu (, Stochastics and Partial Differential Equations: Analysis and Computations)Free, publicly-accessible full text available May 25, 2026
-
Chen, Le; Foondun, Mohammud; Huang, Jingyu; Salins, Michael (, Nonlinearity)We study thestochastic heat equationon subject to a centered Gaussian noise that is white in time and colored in space.The drift term is assumed to satisfy an Osgood-type condition and the diffusion coefficient may have certain related growth. We show that there exists random field solution which do not explode in finite time. This complements and improves upon recent results on blow-up of solutions to stochastic partial differential equations.more » « lessFree, publicly-accessible full text available May 12, 2026
-
Hu, Yaozhong; Wang, Xiong; Xia, Panqiu; Zheng, Jiayu (, Bernoulli)
-
Chen, Le; Kuzgun, Sefika; Mueller, Carl; Xia, Panqiu (, Journal of Statistical Physics)
An official website of the United States government
