skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2247537

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Building upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [67, 68, 69], we construct exact, smooth self-similar imploding solutions to the 3D isentropic compressible Euler equations for ideal gases foralladiabatic exponents$$\gamma>1$$. For the particular case$$\gamma =\frac 75$$(corresponding to a diatomic gas – for example, oxygen, hydrogen, nitrogen), akin to the result [68], we show the existence of a sequence of smooth, self-similar imploding solutions. In addition, we provide simplified proofs of linear stability [67] and nonlinear stability [69], which allow us to construct asymptotically self-similar imploding solutions to the compressible Navier-Stokes equations with density independent viscosity for the case$$\gamma =\frac 75$$. Moreover, unlike [69], the solutions constructed have density bounded away from zero and converge to a constant at infinity, representing the first example of singularity formation in such a setting. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available December 1, 2025