skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2247721

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. P4 serves as a programming language for configuring flexible and programmable network data planes, facilitating the development of custom protocols and programmable switches, and driving innovation in software-defined networking and network function virtualization. While the Linux container based network emulator, Mininet, coupled with the BMv2 software P4 switch, is widely used for rapid prototyping of P4-based applications, BMv2’s diminished performance raises fidelity concerns under high traffic and large network scenarios. In this paper, we introduce a lightweight virtual time system integrated into Mininet with BMv2 to enhance fidelity and scalability. By applying a time dilation factor (TDF) to interactions between containers and the physical machine, we optimize the emulated P4 network’s perceived speed from the application processes’ perspective. System evaluation demonstrates accurate emulation of significantly larger networks under high loads with minimal system overhead. We showcase our system’s utility through two network applications: an emulation of a TCP SYN flood attack and an ECMP load balancer. Evaluating against a production-grade software switch, Open vSwitch, and a physical testbed, we highlight the virtual time system’s improvement in temporal fidelity despite the observed performance degradation in BMv2 software switches. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026
  2. Free, publicly-accessible full text available November 29, 2025
  3. Free, publicly-accessible full text available October 13, 2025
  4. Free, publicly-accessible full text available September 17, 2025
  5. Free, publicly-accessible full text available September 17, 2025
  6. Free, publicly-accessible full text available June 24, 2025
  7. Free, publicly-accessible full text available June 24, 2025
  8. Network emulation allows unmodified code execution on lightweight containers to enable accurate and scalable networked application testing. However, such testbeds cannot guarantee fidelity under high workloads, especially when many processes concurrently request resources (e.g., CPU, disk I/O, GPU, and network bandwidth) that are more than the underlying physical machine can offer. A virtual time system enables the emulated hosts to maintain their own notion of virtual time. A container can stop advancing its time when not running (e.g., in an idle or suspended state). The existing virtual time systems focus on precise time management for CPU-intensive applications but are not designed to handle other operations, such as disk I/O, network I/O, and GPU computation. In this paper, we develop a lightweight virtual time system that integrates precise I/O time for container-based network emulation. We model and analyze the temporal error during I/O operations and develop a barrier-based time compensation mechanism in the Linux kernel. We also design and implement Dynamic Load Monitor (DLM) to mitigate the temporal error during I/O resource contention. VT-IO enables accurate virtual time advancement with precise I/O time measurement and compensation. The experimental results demonstrate a significant improvement in temporal error with the introduction of DLM. The temporal error is reduced from 7.889 seconds to 0.074 seconds when utilizing the DLM in the virtual time system. Remarkably, this improvement is achieved with an overall overhead of only 1.36% of the total execution time. 
    more » « less