skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2300037

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Reanalysis data show a significant weakening of summertime circulation in the Northern Hemisphere (NH) midlatitudes in the satellite era with implications for surface weather extremes. Recent work showed the weakening is not significantly affected by changes in the Arctic, but did not examine the role of different anthropogenic forcings such as aerosols. Here we use the Detection and Attribution Model Intercomparison Project (DAMIP) simulations to quantify the impact of anthropogenic aerosol and greenhouse gas forcing. The DAMIP simulations show aerosols and greenhouse gases contribute equally to zonal‐mean circulation weakening. Regionally, aerosol dominates the Pacific storm track weakening whereas greenhouse gas dominates in the Atlantic. Using a regional energetic framework, we show why the impact of aerosol is the largest in the Pacific. Reduced sulfate aerosol emissions over Eurasia and North America increase (clear‐sky) surface shortwave radiation and turbulent fluxes. This enhances land‐to‐ocean energy contrast and energy transport via stationary circulations to the ocean. Consequently, energy converges poleward of oceanic storm tracks, demanding weaker poleward energy transport storm tracks, and the storm tracks weaken. The impact is larger over the Pacific following the larger emission decrease over Eurasia than North America. Similar yet opposite, increased aerosol emissions over South and East Asia decrease shortwave radiation and weaken land‐to‐ocean energy transport. This diverges energy equatorward of the Pacific storm track, further weakening it. Our results show aerosols are a dominant driver of regional circulation weakening during the NH summertime in the satellite era and a regional energetic framework explaining the underlying processes. 
    more » « less
  2. Abstract There is great uncertainty in the atmospheric circulation response to future Arctic sea ice loss, with some models predicting a shift towards the negative phase of the North Atlantic Oscillation (NAO), while others predicting a more neutral NAO response. We investigate the potential role of systematic model biases in the spread of these responses by modifying the unperturbed (or ‘control’) climate (hereafter referred to as the ‘basic state’) of the Canadian Earth system model version 5 (CanESM5) in sea ice loss experiments based on the protocol of the Polar Amplification Model Intercomparison Project. We show that the presence or absence of the stratospheric pathway in response to sea ice loss depends on the basic state, and that only the CanESM5 version that shows a weakening of the stratospheric polar vortex features a strong negative NAO response. We propose a mechanism that explains this dependency, with a key role played by the vertical structure of the winds in the region between the subtropical jet and the stratospheric polar vortex (‘the neck region winds’), which determines the extent to which anomalous planetary wave activity in response to sea ice loss propagates away from the polar vortex. Our results suggest that differences in the models’ basic states could significantly contribute to model spread in the simulated atmospheric circulation response to sea ice loss, which may inform efforts to narrow the uncertainties regarding the impact of diminishing sea ice on mid-latitude climate. 
    more » « less
  3. Abstract Observations show Arctic sea ice has declined and midlatitude storminess has weakened during Northern Hemisphere (NH) summertime. It is currently unclear whether Arctic sea ice loss impacts summertime storminess because most previous work focuses on other seasons. Here we quantify the impact of Arctic sea ice loss on NH summertime storminess using equilibrium and transient climate model simulations. The equilibrium simulations show mid‐to‐late 21st century Arctic sea ice loss weakens summertime storminess, but only in the presence of ocean coupling. With ocean coupling, the equator‐to‐pole temperature and atmospheric energy gradients significantly weaken due to increased surface turbulent flux in the polar region following Arctic sea ice loss. The transient simulations show Arctic sea ice loss does not significantly weaken summertime storminess until the late 21st century. Furthermore, Arctic Amplification, which is dominated by Arctic sea ice loss in the present day, does not significantly impact the present‐day weakening of summertime storminess. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2025