- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
AghaKouchak, Amir (3)
-
Huning, Laurie S (2)
-
Love, Charlotte A (2)
-
Markonis, Yannis (2)
-
Vahedifard, Farshid (2)
-
Zhao, Yunxia (2)
-
Alborzi, Aneseh (1)
-
Anjileli, Hassan (1)
-
Arabi, Mazdak (1)
-
Ashraf, Samaneh (1)
-
Bateni, Sayed M (1)
-
Chaffe, Pedro_L B (1)
-
Cooper, Kevin (1)
-
Davis, Steven J. (1)
-
Hanel, Martin (1)
-
Hayes, Michael (1)
-
Hjelmstad, Annika (1)
-
Ho, Sarah Quynh-Giang (1)
-
Huning, Laurie S. (1)
-
Jayasinghe, Susantha (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 13, 2025
-
Huning, Laurie S; Love, Charlotte A; Anjileli, Hassan; Vahedifard, Farshid; Zhao, Yunxia; Chaffe, Pedro_L B; Cooper, Kevin; Alborzi, Aneseh; Pleitez, Edward; Martinez, Alexandre; et al (, Reviews of Geophysics)Globally, land subsidence (LS) often adversely impacts infrastructure, humans, and the environment. As climate change intensifies the terrestrial hydrologic cycle and severity of climate extremes, the interplay among extremes (e.g., floods, droughts, wildfires, etc.), LS, and their effects must be better understood since LS can alter the impacts of extreme events, and extreme events can drive LS. Furthermore, several processes causing subsidence (e.g., ice‐rich permafrost degradation, oxidation of organic matter) have been shown to also release greenhouse gases, accelerating climate change. Our review aims to synthesize these complex relationships, including human activities contributing to LS, and to identify the causes and rates of subsidence across diverse landscapes. We primarily focus on the era of synthetic aperture radar (SAR), which has significantly contributed to advancements in our understanding of ground deformations around the world. Ultimately, we identify gaps and opportunities to aid LS monitoring, mitigation, and adaptation strategies and guide interdisciplinary efforts to further our process‐based understanding of subsidence and associated climate feedbacks. We highlight the need to incorporate the interplay of extreme events, LS, and human activities into models, risk and vulnerability assessments, and management practices to develop improved mitigation and adaptation strategies as the global climate warms. Without consideration of such interplay and/or feedback loops, we may underestimate the enhancement of climate change and acceleration of LS across many regions, leaving communities unprepared for their ramifications. Proactive and interdisciplinary efforts should be leveraged to develop strategies and policies that mitigate or reverse anthropogenic LS and climate change impacts.more » « lessFree, publicly-accessible full text available November 2, 2025
-
AghaKouchak, Amir; Huning, Laurie S.; Sadegh, Mojtaba; Qin, Yue; Markonis, Yannis; Vahedifard, Farshid; Love, Charlotte A.; Mishra, Ashok; Mehran, Ali; Obringer, Renee; et al (, Nature Reviews Earth & Environment)
An official website of the United States government
