- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Sam, Steven V (3)
-
Snowden, Andrew (3)
-
Knutson, Allen (1)
-
Sam, Steven_V (1)
-
Tosteson, Philip (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Witt algebra $${\mathfrak{W}}_{n}$$ is the Lie algebra of all derivations of the $$n$$-variable polynomial ring $$\textbf{V}_{n}=\textbf{C}[x_{1}, \ldots , x_{n}]$$ (or of algebraic vector fields on $$\textbf{A}^{n}$$). A representation of $${\mathfrak{W}}_{n}$$ is polynomial if it arises as a subquotient of a sum of tensor powers of $$\textbf{V}_{n}$$. Our main theorems assert that finitely generated polynomial representations of $${\mathfrak{W}}_{n}$$ are noetherian and have rational Hilbert series. A key intermediate result states polynomial representations of the infinite Witt algebra are equivalent to representations of $$\textbf{Fin}^{\textrm{op}}$$, where $$\textbf{Fin}$$ is the category of finite sets. We also show that polynomial representations of $${\mathfrak{W}}_{n}$$ are equivalent to polynomial representations of the endomorphism monoid of $$\textbf{A}^{n}$$. These equivalences are a special case of an operadic version of Schur–Weyl duality, which we establish.more » « less
-
Knutson, Allen; Sam, Steven V (, Transformation Groups)Free, publicly-accessible full text available March 1, 2026
-
Sam, Steven V; Snowden, Andrew (, Journal of Combinatorial Algebra)A representation of\mathfrak{gl}(V)=V \otimes V^{\ast}is a linear map\mu \colon \mathfrak{gl}(V) \otimes M \rightarrow Msatisfying a certain identity. By currying, giving a linear map\muis equivalent to giving a linear mapa \colon V \otimes M \rightarrow V \otimes M, and one can translate the condition for\muto be a representation into a condition ona. This alternate formulation does not use the dual ofVand makes sense for any objectVin a tensor category\mathcal{C}. We call such objects representations of thecurried general linear algebraonV. The currying process can be carried out for many algebras built out of a vector space and its dual, and we examine several cases in detail. We show that many well-known combinatorial categories are equivalent to the curried forms of familiar Lie algebras in the tensor category of linear species; for example, the titular Brauer category is the curried form of the symplectic Lie algebra. This perspective puts these categories in a new light, has some technical applications, and suggests new directions to explore.more » « less
-
Sam, Steven V; Snowden, Andrew (, Algebraic Geometry)
An official website of the United States government
