Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
DL_POLY Quantum 2.1 is introduced here as a highly modular, sustainable, and scalable general-purpose molecular dynamics (MD) simulation software for large-scale long-time MD simulations of condensed phase and interfacial systems with the essential nuclear quantum effects (NQEs) included. The new release improves upon version 2.0 through the introduction of several emerging real-time path integral (PI) methods, including fast centroid molecular dynamics (f-CMD) and fast quasi-CMD (f-QCMD) methods, as well as our recently introduced hybrid CMD (h-CMD) method for the accurate and efficient simulation of vibrational infrared spectra. Several test cases, including liquid bulk water at 300 K and ice Ih at 150 K, are used to showcase the performance of different implemented PI methods in simulating the infrared spectra at both ambient conditions and low temperatures where NQEs become more apparent. Additionally, using different salt-in-water (i.e., dilute) and water-in-salt (i.e., concentrated) lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) aqueous electrolyte solutions, we demonstrate the applicability of our recently introduced h-CMD method implemented in DL_POLY Quantum 2.1 for the large scale simulation of infrared (IR) spectra of complex heterogeneous systems. We show that h-CMD can overcome the curvature problem of CMD and the artificial broadening of T-RPMD for the accurate simulation of the vibrational spectra of complex, heterogeneous systems with NQEs included.more » « lessFree, publicly-accessible full text available May 8, 2026
-
Free, publicly-accessible full text available January 30, 2026
-
2D layered metal-organic frameworks (MOFs) are a new class of multifunctional materials that can provide electrical conductivity on top of the conventional structural characteristics of MOFs, offering potential applications in electronics and optics. Here, for the first time, we employ Machine Learning (ML) techniques to predict the thermodynamic stability and electronic properties of layered electrically conductive (EC) MOFs, bypassing expensive ab initio calculations for the design and discovery of new materials. Proper feature engineering is a very important factor in utilizing ML models for such purposes. Here, we show that a combination of elemental features, using generic statistical reduction methods and crystal structure information curated from the recently introduced EC-MOF database, leads to a reasonable prediction of the thermodynamic and electronic properties of EC MOFs. We utilize these features in training a diverse range of ML classifiers and regressors. Evaluating the performance of these different models, we show that an ensemble learning approach in the form of stacking ML models can lead to higher accuracy and more reliability on the predictive power of ML to be employed in future MOF research.more » « less
-
DL_POLY Quantum 2.0, a vastly expanded software based on DL_POLY Classic 1.10, is a highly parallelized computational suite written in FORTRAN77 with a modular structure for incorporating nuclear quantum effects into large-scale/long-time molecular dynamics simulations. This is achieved by presenting users with a wide selection of state-of-the-art dynamics methods that utilize the isomorphism between a classical ring polymer and Feynman’s path integral formalism of quantum mechanics. The flexible and user-friendly input/output handling system allows the control of methodology, integration schemes, and thermostatting. DL_POLY Quantum is equipped with a module specifically assigned for calculating correlation functions and printing out the values for sought-after quantities, such as dipole moments and center-of-mass velocities, with packaged tools for calculating infrared absorption spectra and diffusion coefficients.more » « less
-
Most of the chemistry in nanoporous materials with small pore sizes and windows takes place on the outer surface, which is in direct contact with the substrate/solvent, rather than within the pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics (MD) simulations to decipher the interaction of water with a realistic finite ∼5.1 nm nanoparticle (NP) model of ZIF-8, with edges containing undercoordinated Zn metal sites, vs a conventionally employed pristine crystalline bulk (CB) model. The hydrophobic interior surface of the CB model imparts significant dynamical behavior on water molecules with (i) increasing diffusivity from the surface toward the center of the pores and (ii) confined water, at low concentration, showing similar diffusivity to that of the bulk water. On the other hand, water molecules adsorbed on the surface of the NP model exhibit a range of characteristics, including “coordinated”, “confined”, and “bulk-like” behavior. Some of the water molecules form coordinative bonds with the undercoordinated Zn metal centers and act as nucleation sites for the water droplets to form, facilitating diffusion into the pores. However, diffusion of water molecules is limited to the areas near the surface and not all the way to the core of the NP model. Our atomistic MD simulations provide insights into the stability of ZIFs in aqueous solutions despite hydrolysis of their outer surface. Such insights are helpful in designing more robust nanoporous materials for applications in humid environments.more » « less
An official website of the United States government
