skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2302668

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During summer 2010, exceptional heat and drought in western Russia (WRU) occurred simultaneously with heavy rainfall and flooding in northern Pakistan (NPK). Here, we use the Great Eurasian Drought Atlas (GEDA), a new 1,021 year tree-ring reconstruction of summer soil moisture, to investigate the variability and dynamics of this exceptional spatially concurrent climate extreme over the last millennium. Summer 2010 in the GEDA was the second driest year over WRU and the largest wet–dry contrast between NPK and WRU; it was also the second warmest year over WRU in an independent 1,015 year temperature reconstruction. Soil moisture variability is only weakly correlated between the two regions and 2010 event analogues are rare, occurring in 31 (3.0%) or 52 (5.1%) years in the GEDA, depending on the definition used. Post-1900 is significantly drier in WRU and wetter in NPK compared to previous centuries, increasing the likelihood of concurrent wet NPK–dry WRU extremes, with over 20% of the events in the record occurring in this interval. The dynamics of wet NPK–dry WRU events like 2010 are well captured by two principal components in the GEDA, modes correlated with ridging over northern Europe and western Russia and a pan-hemispheric extratropical wave train pattern similar to that observed in 2010. Our results highlight how high resolution paleoclimate reconstructions can be used to capture some of the most extreme events in the climate system, investigate their physical drivers, and allow us to assess their behavior across longer timescales than available from shorter instrumental records. 
    more » « less