Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT With renewable energy being aggressively integrated into the grid, energy supplies are becoming vulnerable to weather and the environment, and are often incapable of meeting population demands at a large scale if not accurately predicted for energy planning. Understanding consumers' power demands ahead of time and the influences of weather on consumption and generation can help producers generate effective power management plans to support the target demand. In addition to the high correlation with the environment, consumers' behaviors also cause non‐stationary characteristics of energy data, which is the main challenge for energy prediction. In this survey, we perform a review of the literature on prediction methods in the energy field. So far, most of the available research encompasses one type of generation or consumption. There is no research approaching prediction in the energy sector as a whole and its correlated features. We propose to address the energy prediction challenges from both consumption and generation sides, encompassing techniques from statistical to machine learning techniques. We also summarize the work related to energy prediction, electricity measurements, challenges related to energy consumption and generation, energy forecasting methods, and real‐world energy forecasting resources, such as datasets and software solutions for energy prediction. This article is categorized under:Application Areas > Industry Specific ApplicationsTechnologies > PredictionTechnologies > Machine Learningmore » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Businesses are the driving force behind economic systems and are the lifeblood of the community. A business shares striking similarity to a living organism, including birth, infancy, rising, prosperity, and falling. The success of a business is not only important to the owners, but is also critical to the regional/domestic economic system, or even the global economy. Recent years have witnessed many new emerging businesses with tremendous success, such as Google, Apple, Facebook etc., yet millions of businesses also fail or fade out within a rather short period of time. Finding patterns/factors connected to the business rise and fall remains a long lasting question puzzling many economists, entrepreneurs, and government officials. Recent advancement in artificial intelligence, especially machine learning, has lend researchers powers to use data to model and predict business success. However, due to data driven nature of all machine learning methods, existing approaches are rather domain-driven and ad-hoc in their design and validations. In this paper, we propose a systematic review of modeling and prediction of business success. We first outline a triangle framework to showcase three parities connected to the business: Investment-Business-Market (IBM). After that, we align features into three main categories, each of which is focused on modeling a business from a particular perspective, such as sales, management, innovation etc., and further summarize different types of machine learning and deep learning methods for business modeling and prediction. The survey provides a comprehensive review of computational approaches for business performance modeling and prediction.more » « less
-
Abstract Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main food source, and often spend up to eight hours a day grazing. They move slow and frequently stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to environment change and other risks. Accurate counting manatee aggregations within a region is not only biologically meaningful in observing their habit, but also crucial for designing safety rules for boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we propose a deep learning based crowd counting approach to automatically count number of manatees within a region, by using low quality images as input. Because manatees have unique shape and they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc. making it difficult to accurately count manatee numbers. To address the challenges, we propose to use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density functions can maximally capture shapes of individual manatees in different aggregations. After that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to learn manatee densities and calculate number of manatees in the scene. By using generic low quality images extracted from surveillance videos, our experiment results and comparison show that AGK kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The proposed method works particularly well for counting manatee aggregations in environments with complex background.more » « less
-
Free, publicly-accessible full text available August 16, 2026
-
Graph Neural Networks (GNNs) have shown superb performance in handling networked data, mainly attributed to their message passing and convolution process across neighbors. For most literature, the performance of GNNs is mainly reported based on noise-free data environments. No study has systematically evaluated GNNs’ performance under noise. In this article, we carry out an empirical study and theoretical analysis of four types of GNNs, including Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), Graph Contrastive Networks (GCL), and graph UniFilter under three types of noise, including attribute noise, structure noise, and label noise. Our study shows that GNNs behave tremendously differently in response to different types of noise. Overall, GAT is the most noise vulnerable and sensitive, whereas GCL is the most noise resilient. We further carry out theoretical analysis to explain the reason causing GAT to be sensitive to noise, and propose a solution to enhance its noise resilience. Our study brings in-depth firsthand knowledge of GNNs under noise for researchers and practitioners to better utilize GNNs in real-world applications.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Free, publicly-accessible full text available July 17, 2026
-
Free, publicly-accessible full text available July 13, 2026
-
Free, publicly-accessible full text available July 3, 2026
-
Free, publicly-accessible full text available April 14, 2026
-
Free, publicly-accessible full text available April 3, 2026
An official website of the United States government
