skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2303581

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The design of autonomous, dynamically selfassembled robots that perform collective motion at the microscale can help in advancing the fundamental principles of self-assembly and coordinated behavior of complex structures. Here, we discuss the dissipative collective dynamics of soft colloidal micro-rotators driven by magnetic rotating fields with different orientation. The micro-rotators were polydimethylsiloxane microbeads with internally aligned magnetic nanoparticle chains, which respond to the torque created by rotating magnetic fields. The dynamic assembly patterns and their collective motion when actuated by in-plane and by transversal rotating fields were characterized. In all cases, we observed a rich variety of new modes of collective dynamics of the micro-rotor ensembles. We categorized these dynamics into three different types including caterpillar motion and cartwheel motion in case of a transverse-plane rotating field and gear-like motion in case of an in-plane field. The influence of field parameters such as rotational speed was studied. These fascinating dynamic patterns and motility modes could find application in future microrobots operating in complex biological fluids. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026