skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2303652

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anions formed by the perhalobenzene series C$$_6$$Cl$$_{n}$$F$$_{6-n}$$ ($n=0-6$) are studied computationally. All members of the series form both stable valence and stable non-valence anions. At the geometry of the neutral parents, only non-valence anions are bound, and the respective vertical electron affinities show values in the $20$ to $60$meV range. Valence anions show distorted non-planar structures, and one can distinguish two types of conformers. A-type conformers show puckered-ring structures and excess electrons delocalized over several C-Cl bonds [in case of C$$_6$$F$$_6^-$$, C-F bonds], while B-type conformers possess excess electrons essentially localized in a single C-Cl bond, which is accordingly strongly stretched and bent out-of-plane. For a specific anion, all conformers are close in energy (relative energies of less than $10$kJ/mol) and are connected by low-lying transition states. Accordingly, A-type and B-type conformers possess similar adiabatic electron affinities, however, their vertical detachment energies exhibit drastically different values, which should ease conformer distinction in photoelectron spectroscopy. 
    more » « less
  2. The photoelectron (PE) spectra of C6F5X– (X = Cl, Br, I) and computational results on the anions and neutrals are presented and compared to previously reported results on C6F6– [McGee, C. J. J. Phys. Chem. A 2023, 127, 8556–8565.]. The spectra all exhibit broad, vibrationally unresolved detachment transitions, indicating that the equilibrium structures of the anions are significantly different from the neutrals. The PE spectrum of C6F5Cl– exhibits a parallel photoelectron angular distribution (PAD), similar to that of the previously reported C6F6– spectrum, while the PE spectra of C6F5Br– and C6F5I– have isotropic PADs, and also exhibit a prominent X– PE feature due to photodissociation of C6F5X– resulting in X– formation. Identification of the C6F5X– detachment transition origins, which is equivalent to the neutral electron affinity (EA), in all three cases is difficult, since the broadness of the detachment feature is accompanied by vanishingly small detachment cross section near the origin. Upper limits on the EAs were determined to be 1.70 eV for C6F5Cl, 2.10 eV for C6F5Br, and 2.00 eV for C6F5I, all significantly higher than the 0.76 eV upper limit determined for C6F6 with the same experiment. The broad detachment transitions are consistent with computational results, which predict very large differences between the neutral and anionic C–X (X = Cl, Br, I) bond lengths. Based on differences between the MBIS atom charges in the anions and neutrals, the excess charge in the anion is on the unique C atom and X, in contrast to the nonplanar C2v structured C6F6– anion, for which the charge is delocalized over the molecule. In C6F5Cl–, the C–Cl bond is predicted to be bent out of the plane, while both C6F5Br– and C6F5I– are predicted to be planar on average. The impact of the interruption of the symmetry in the hexafluorobenzene neutral and anion on the molecular and electronic structure of C6F5X/C6F5X– is considered, as well as the possible dissociative state leading to X– (X = Br, I) formation, and the nature of the C–X bond. 
    more » « less
  3. Bound state methods can accurately predict partial wave decay probabilities of metastable anions. 
    more » « less