skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2303902

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The cold neutral medium (CNM) is where neutral atomic hydrogen (Hi) is converted into molecular clouds, so the structure and kinematics of the CNM are key drivers of galaxy evolution. Here we provide new constraints on the vertical distribution of the CNM using the recently developedkinematic_scaleheightsoftware package and a large catalog of sensitive Hiabsorption observations. We estimate the thickness of the CNM in the solar neighborhood to beσz∼ 50–90 pc, assuming a Gaussian vertical distribution. This is a factor of ∼2 smaller than typically assumed, indicating that the thickness of the CNM in the solar neighborhood is similar to that found in the inner Galaxy, consistent with recent simulation results. If we consider only structures with Hioptical depthsτ> 0.1 or column densitiesN(Hi) > 1019.5cm−2, which recent work suggests are thresholds for molecule formation, we findσz∼ 50 pc. Meanwhile, for structures withτ< 0.1 or column densitiesN(Hi) < 1019.5cm−2, we findσz∼ 120 pc. These thicknesses are similar to those derived for the thin- and thick-disk molecular cloud populations traced by CO emission, possibly suggesting that cold Hiand CO are well mixed. Approximately 20% of CNM structures are identified as outliers, with kinematics that are not well explained by Galactic rotation. We show that some of these CNM structures—perhaps representing intermediate-velocity clouds—are associated with the Local Bubble wall. We compare our results to recent observations and simulations, and we discuss their implications for the multiphase structure of the Milky Way’s interstellar medium. 
    more » « less
  2. Abstract The vertical distribution of cold neutral hydrogen (Hi) clouds is a constraint on models of the structure, dynamics, and hydrostatic balance of the interstellar medium. In 1978, Crovisier pioneered a method to infer the vertical distribution of Hiabsorbing clouds in the solar neighborhood. Using data from the Nançay 21 cm absorption survey, Crovisier determined the mean vertical displacement of cold Hiclouds, 〈∣z∣〉. We revisit that author’s analysis and explore the consequences of truncating the Hiabsorption sample in Galactic latitude. For any nonzero latitude limit, we find that the quantity inferred by Crovisier is not the mean vertical displacement but rather a ratio involving higher moments of the vertical distribution. The resultant distribution scale heights are thus ∼1.5 to ∼3 times smaller than previously determined. In light of this discovery, we develop a Bayesian Monte Carlo Markov Chain method to infer the vertical distribution of Hiabsorbing clouds. We fit our model to the original Nançay data and find a vertical distribution moment ratio 〈∣z∣3〉/〈∣z∣2〉 = 97 ± 15 pc, which corresponds to a Gaussian scale heightσz= 61 ± 9 pc, an exponential scale heightλz= 32 ± 5 pc, and a rectangular half-widthWz,1/2= 129 ± 20 pc. Consistent with recent simulations, the vertical scale height of cold Hiclouds appears to remain constant between the inner Galaxy and the Galactocentric distance of the solar neighborhood. Local fluctuations might explain the large-scale height observed at the same Galactocentric distance on the far side of the Galaxy. 
    more » « less
  3. The Magellanic Stream (MS), a tail of diffuse gas formed from tidal and ram pressure interactions between the Small and Large Magellanic Clouds (SMC and LMC) and the Halo of the Milky Way, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO+ ,HCN,HNC,andC2H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array (ALMA) to trace these regions, comparing with HI archival data from the Galactic Arecibo L-Band Feed Array (GALFA) HI Survey and the Galactic All Sky Survey (GASS) to compare these environments in the MS to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here. 
    more » « less