skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2304033

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The proof of Witten's finiteness conjecture established that the Kauffman bracket skein modules of closed $$3$$-manifolds are finitely generated over $$\Q(A)$$. In this paper, we develop a novel method for computing these skein modules. We show that if the skein module $$S(M,\Q[A^\pmo])$$ of $$M$$ is tame (e.g. finitely generated over $$\Q[A^{\pm 1}]$$), and the $$SL(2, \C)$$-character scheme is reduced, then the dimension $$\dim_{\Q(A)}\, S(M, \Q(A))$$ is the number of closed points in this character scheme. This, in particular, verifies a conjecture in the literature relating $$\dim_{\Q(A)}\, S(M, \Q(A))$$ to the Abouzaid-Manolescu $$SL(2,\C)$$-Floer theoretic invariants, for infinite families of 3-manifolds. We prove a criterion for reducedness of character varieties of closed $$3$$-manifolds and use it to compute the skein modules of Dehn fillings of $(2,2n+1)$-torus knots and of the figure-eight knot. The later family gives the first instance of computations of skein modules for closed hyperbolic 3-manifolds. We also prove that the skein modules of rational homology spheres have dimension at least $$1$$ over $$\Q(A)$$. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026