- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Jin, Zexin (2)
-
Nuckolls, Colin (2)
-
Steigerwald, Michael L (2)
-
Bao, Si Tong (1)
-
Gray, Jesse (1)
-
Jiang, Haoyu (1)
-
Jiang, Qifeng (1)
-
Louie, Shayan (1)
-
Orchanian, Nicholas M (1)
-
Posey, Victoria A (1)
-
Roy, Xavier (1)
-
Sun, Shantao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pseudocapacitors offer a unique strategy to combine the rapid charging rates of capacitors with the high energy density of batteries, potentially offering a unique solution to energy storage challenges. Bending and twisting aromatic building blocks to form contorted aromatics have emerged as a new strategy to create organic materials with unique and tunable properties. This paper studies the union between these two concepts: molecular contortion and organic pseudocapacitors. The recent development of fully organic pseudocapacitors, including high-performing devices based on perylene diimide organic redox units, introduces the added benefit of low cost, synthetic tunability, and increased flexibility. We synthesize a series of polymers by joining perylene diimide with various linkers that incorporate a helical moiety from [4]helicene to [6]helicene into the molecular backbone. We prepare three new electroactive polymers that incorporate benzene, naphthalene, and anthracene linkers and study their pseudocapacitive performance to infer key design principles for organic pseudocapacitors. Our results show that the naphthalene linker results in the most strongly coupled redox centers and displays the highest pseudocapacitance of 292 ± 47 F/g at 0.5 A/g. To understand the pseudocapacitive behavior, we synthesized dimer model compounds to further probe the electronic structure of these materials through electronic absorption spectroscopy and first-principles calculations. Our results suggest that the identity of the aromatic linker influences the contortion between neighboring perylene diimide units, the coupling between redox centers, and their relative angles and distances. We find that competing molecular design factors must be carefully optimized to generate high-performance devices. Overall, this study provides key insights into molecular design strategies for generating high-performing organic pseudocapacitor materials.more » « lessFree, publicly-accessible full text available May 14, 2025
-
Bao, Si Tong ; Louie, Shayan ; Jiang, Haoyu ; Jiang, Qifeng ; Sun, Shantao ; Steigerwald, Michael L ; Nuckolls, Colin ; Jin, Zexin ( , Journal of the American Chemical Society)Free, publicly-accessible full text available January 10, 2025