skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2305164

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nitrate anion (NO3−) is abundant in environmental aqueous phases, including aerosols, surface waters, and snow, where its photolysis releases nitrogen oxides back into the atmosphere. Nitrate photolysis occurs via two channels: (1) the formation of NO2 and O− and (2) the formation of NO2− and O(3P). The occurrence of two reaction channels with very low quantum yield (∼1%) highlights the critical role of the solvation environment and spin-forbidden electronic transitions, which remain unexplained at the molecular level. We investigate the two photolysis channels in water using quantum chemical calculations and first-principles molecular dynamics simulations with hybrid density functional theory and enhanced sampling. We find that spin-forbidden absorption to the triplet state (T1) is possible but occurs at a rate ∼15 times weaker than the spin-allowed transition to the singlet state (S1). A metastable solvation cage complex requires additional thermal energy to dissociate the N–O bond, allowing for recombination or non-radiative deactivation. Our results explain the temperature dependence of photolysis, linked to hydrogen bond rearrangement in the solvation shell. This work provides new molecular insights into nitrate photolysis and its low quantum yield under environmental conditions. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  2. In computational physics, chemistry, and biology, the implementation of new techniques in shared and open-source software lowers barriers to entry and promotes rapid scientific progress. However, effectively training new software users presents several challenges. Common methods like direct knowledge transfer and in-person workshops are limited in reach and comprehensiveness. Furthermore, while the COVID-19 pandemic highlighted the benefits of online training, traditional online tutorials can quickly become outdated and may not cover all the software’s functionalities. To address these issues, here we introduce “PLUMED Tutorials,” a collaborative model for developing, sharing, and updating online tutorials. This initiative utilizes repository management and continuous integration to ensure compatibility with software updates. Moreover, the tutorials are interconnected to form a structured learning path and are enriched with automatic annotations to provide broader context. This paper illustrates the development, features, and advantages of PLUMED Tutorials, aiming to foster an open community for creating and sharing educational resources. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. Nitrate photolysis is a potentially significant mechanism for “renoxifying” the atmosphere, i.e., converting nitrate into nitrogen oxides – nitrogen dioxide (NO2) and nitric oxide (NO) – and nitrous acid (HONO). Nitrate photolysis in the environment occurs through two channels which produce (1) NO2 and hydroxyl radical (OH) and (2) nitrite (NO2-) and an oxygen atom (O(3P)). Although the aqueous quantum yields and photolysis rate constants of both channels have been established, field observations suggest that nitrate photolysis is enhanced in the environment. Laboratory studies investigating these enhancements typically only measure one of the two photo-channels, since measuring both channels generally requires separate analytical methods and instrumentation. However, measuring only one channel makes it difficult to assess whether secondary chemistry is enhancing one channel at the expense of the other or if there is an overall enhancement of nitrate photochemistry. Here, we show that the addition of S(IV), i.e., bisulfite and sulfite, can convert NO2 to NO2-, allowing for measurement of both nitrate photolysis channels with the same equipment. By varying the concentration of S(IV) and exploring method parameters, we determine the experimental conditions that quantitatively convert NO2 and accurately quantify the resulting NO2-. We then apply the method to a test case, showing how an OH scavenger in solution prevents the oxidation of NO2- to NO2 but does not enhance the overall photolysis efficiency of nitrate. 
    more » « less